
SUMMARY

Chloroaluminate melts may be used as electrolytes for the production of aluminum and they are
also involved in high energy density batteries (“Zebra” battery) : Na/β-Al2O3/NaAlCl4, FeCl2, Fe.

Recently, the thermodynamic database previously developed [1,2a,2b] for the LiCl-NaCl-KCl-
MgCl2-CaCl2-MnCl2-FeCl2-FeCl3-CoCl2-NiCl2 system was extended with the addition of AlCl3, and
the thermodynamic “optimization” of the NaCl-KCl-AlCl3 system was published [3]. In a
thermodynamic “optimization” of a system, all available phase diagram and thermodynamic data
(enthalpy of mixing, emf, vapor pressure measurements,...) are critically evaluated simultaneously
in order to obtain one set of model equations for the Gibbs free energies of all phases (liquid, solid
solutions, stoichiometric compounds) as functions of temperature and composition. From these
equations, all of the thermodynamic properties and the phase diagrams can be back-calculated
using Gibbs free energy minimization software. In this way, the data are rendered self-consistent,
discrepancies among the data are identified, and extrapolations and interpolations are performed.
The model parameters are stored in a computer database and the calculation of thermodynamic
properties and phase diagram sections can be made over extended ranges of temperature and
pressure.

In this work, all binary subsystems of the LiCl-NaCl-KCl-MgCl2-CaCl2-MnCl2-FeCl2-FeCl3-CoCl2-
NiCl2-AlCl3 system (except AlCl3-FeCl3, for which 2 terminal solid solutions remain to be optimized)
as well as all higher order (mostly ternary) subsystems for which experimental data were available
have been considered. In particular, a thermodynamic modeling of the binary systems ACl-AlCl3
(where A = Li, Na and K) is a real challenge as these systems show strong negative deviations from
ideality at the equimolar composition (due to short-range ordering in the liquid phase). This is
illustrated for instance by the very steep NaCl liquidus in the calculated NaCl-AlCl3 phase diagram
(Figure 1) and by the rapid change in activity of AlCl3 in the NaCl-AlCl3 liquid (Figure 4).

[1] P. Chartrand and A.D. Pelton, Metall. Mater. Trans., 2001, vol. 32A, pp. 1361-83.
[2a,2b] C. Robelin, P. Chartrand and A.D. Pelton, J. Chem. Thermodyn. (in press).
[3] C. Robelin, P. Chartrand and A.D. Pelton, J. Chem. Thermodyn., 2004, vol. 36(8), pp. 683-99.
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of the gaseous species NaAlCl4(g) and Na2Al2Cl8(g).
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Wai et al, J. Phys. Chem., 94, 1666-1669, 1990 :

exp. data value assessed from solubility product considerations
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MODEL FOR THE LIQUID PHASE

The liquid solution was modeled using the Modified Quasichemical Model [4,5] which takes into
account short-range ordering between second-nearest-neighbor cations (the anionic sublattice is
occupied only by Cl- ions). The parameters of the model are the Gibbs free energy changes ∆gAB/Cl

for the following pair exchange reactions :

(A-Cl-A)pair + (B-Cl-B)pair = 2 (A-Cl-B)pair (1)

where A and B are two different cations. As ∆gAB/Cl becomes progressively more negative, reaction
(1) is shifted to the right, (A-Cl-B) pairs predominate, and the solution becomes progressively more
ordered. The Gibbs free energy of the liquid solution is given by :

(2)

where ni and gi are the number of moles and molar Gibbs free energy of pure component i, ∆Sconfig

is an approximate expression for the configurational entropy of mixing, given by randomly mixing
the (i-j) pairs, and nij is the number of moles of (i-j) pairs.

The binary systems ACl-”AlCl3” (where A = Li, Na and K) show strong negative deviations from
ideality at the equimolar composition (due to short-range ordering in the liquid phase), and the
binary mixtures exhibit a region of liquid-liquid immiscibility at high “AlCl3” content (see the
calculated NaCl-”AlCl3” phase diagram in Figure 1). The existence in ACl-”AlCl3” melts of AlCl4- and
Al2Cl7- species has been observed by Raman spectroscopy [6,7]. The Modified Quasichemical
Model does not explicitly introduce complex anions. However, short-range ordering through
reaction (1) when ∆gAB/Cl is very negative is conceptually identical to the explicit assumption of
complex anions and yields a very similar configurational entropy expression. In order to introduce
two different compositions of maximum short-range-ordering near the AAlCl4 and AAl2Cl7
compositions, pure liquid aluminum chloride was modeled as a mixture of AlCl3 and Al2Cl6 (with
paired aluminum cations) with the constraint that the experimental solid-liquid and liquid-gas
equilibria be satisfactorily reproduced (Figure 2). The “AlCl3”-MCl2 systems (where M = Mg, Mn,
Fe, Co and Ni) were modeled by introducing two different compositions of maximum short-range-
ordering near the M(AlCl4)2 and M(Al2Cl7)2 compositions (see the calculated “AlCl3”-MgCl2 phase
diagram in Figure 3). Other results for the NaCl-”AlCl3” system are shown in Figures 4 & 5.
Results for various multicomponent systems are shown in Figures 6, 7, 8, 9, 10, 11 & 12.
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