

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

GactSage[™]

What is FactFlow?

FactFlow is FactSage's new process simulation and optimization interface.

Key features include:

- **Powered by FactSage and ChemApp**: FactFlow employs the same thermodynamic equilibrium calculation algorithms and databases as FactSage and ChemApp, offering unparalleled accuracy.
- Intuitive User Interface: Designed to be user-friendly, FactFlow features a drag and drop flowsheet-based interface for process simulation.
- Flexible Simulation Capabilities: FactFlow supports a wide range of applications, from basic equilibrium calculations performed in series to complex process optimizations, steady-state simulations and parametric studies.
- **Comprehensive Analysis Tools**: FactFlow is equipped with extensive analysis and visualization tools, enabling users to experiment with different input parameters and allowing in-depth examination of results.
- Long-term continuous development and support: FactFlow is backed by a dedicated development team, ensuring regular updates, feature enhancements, and user support.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

What is FactFlow?

FactFlow has already been employed to model various processes, and has been used by industry partners around the world.

We have published a paper titled **Pyrometallurgical process modeling using FactFlow** in the *Calphad* journal that demonstrates FactFlow's capabilities through 4 examples of pyrometallurgical processes:

Ferrosilicon alloy production

Copper primary production

https://doi.org/10.1016/j.calphad.2024.102772

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

What is FactFlow?

FactFlow has already been employed to model various processes, and has been used by industry partners around the world.

We have published a paper titled **Pyrometallurgical process modeling using FactFlow** in the *Calphad* journal that demonstrates FactFlow's capabilities through 4 examples of pyrometallurgical processes:

Titanium primary production

MIDREX direct iron reduction process

https://doi.org/10.1016/j.calphad.2024.102772

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder

Powered by

• Support

About This Manual

This manual is designed to help you learn how to use FactFlow effectively, whether you're new or looking to explore more advanced features.

We strongly recommend beginning with the **Getting Started** section. It's a guided walkthrough that shows you how to **reproduce a real figure** from the FactFlow paper, step by step.

You'll follow along directly in your own FactFlow installation and learn how to:

- Launch FactFlow
- Open an example project
- Navigate the interface
- Run a calculation
- View and plot simulation results

This hands-on approach is the fastest way to become familiar with FactFlow's core workflow.

Getting Started - Open an example

FactFlow examples are a great way to learn how the software works and explore its capabilities To open an example, select it from the list and click **Open** in the bottom-right corner.

Try opening the 2.3_Copper-making_Fig10 example. This example reproduces Figure 10 from Section 3.2.3 of the FactFlow paper. In the following steps, we'll walk through how to generate the plot shown in that figure.

Getting Started - Main interface

Getting Started - Plot the results

In the Plot Options dialog, simply click OK. This will launch the Analysis Module, FactFlow's dedicated environment for advanced analysis and visualization. Plot settings and customization options will be covered later in this guide.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder

Powered by

actSage"

Support

User manual

To create your own simulation, you'll follow a multi-step process. Each of these steps is explained in detail in this manual.

What Comes Next - Creating your own Process Simulation

About This Manual

	New			Ctrl+N	² (atm) Energ	gy(J) Quantity(mol) Vol(litre)
	Open			Ctrl+0		
	Directories			Ctrl+D	(å) Fe	4 (1A) Zn
	Save			Ctrl+S	0010	
	Save As				-	
	Save Fouilik	Resulte	File		15	
	oure equin	2 Treading 1			3ase-Phas	e Full Name 🔺
	ChemApp 1	ile		>	FTlite-Liqu	Liquid
	Chamfana Fila			FTite-A1	FCC-A1	
ChemSage File FactFlow Files				,	FTIke-A2	BCC-A2
			>	Save	Save FactFlow file	
	FactProSim	Files		>	Save	FactFlow and Run
					Help	
	Exit				F Tite-D82	D82 Prototype-Cuts2n8 💌
- 16	ansixions - aip	ina (A> —		Legend	-	
	Number of transitions:	All	•	I - immiscible J - 3-immiscit + - selected	7 xle 1 2	Show (• all C selected species: 54 Select
Fina	al Condition	าร				E
	<a>	<		T(C)	P(atm)	 Product H(J)
01	0.05			600	1	C
10	steps	T Tabl	e			21+ calculations

Step 1

🚺 Equilib - Menu: last system

Prepare your Database

Use FactSage's Equilib module to perform the species and phase selection for your flowsheet's mini database.

Step 2 **Build the Process Flowsheet**

Drag and connect nodes to model your process: inputs, reactors, splitters, recycling loops, etc.

Step 3 **Configure Run Settings**

Define how many simulations to run and how input conditions should vary (e.g., temperature, quantity of reactants).

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

About This Manual

What Comes Next - Creating your own Process Simulation

To create your own simulation, you'll follow a multi-step process. Each of these steps is explained in detail in this manual.

Step 4

Powered by **act**Sage"

Run the Simulation

Launch the simulation—FactFlow will execute all runs, including parametric variations and recycle loops, progressing node by node until convergence.

Step 5 **Analyze the Results**

Access calculation results from any node, then use the Analysis Module to plot trends, compare runs, or examine elemental compositions. You can also export data and plots for further use.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Getting Started

Now that you've seen the overall structure of the manual, it's time to get **hands-on**.

In this section, you'll reproduce a **real figure** from the FactFlow paper by following along with a **built-in example**.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Getting Started - System Requirements

Before launching FactFlow, make sure your system meets the following requirements:

- Operating System: Windows 10/11 or later
- RAM: 8GB minimum, 16GB recommended
- FactSage Requirement: Valid license of FactSage 8.4 or later

FactFlow Getting Started - Launching FactFlow

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

To launch FactFlow, open **FactSage**, then go to the **Add-ons** menu in the top toolbar and select **FactFlow process simulator package...** from the dropdown list. Click **Run** to launch FactFlow in the pop-up window.

FactFlow Getting Started - Launching FactFlow

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

On launch, FactFlow may prompt you to install an available update. We **highly recommend** clicking **Yes**—the update will run automatically, and FactFlow will relaunch once it's complete.

FactFlow Getting Started - Projects window

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Upon launch, FactFlow automatically opens the **Projects** window, where you can view, open, or create projects.

KUN I	K V P atm	✓ Energy J ✓ Quantity mol	 Run Settings Show stream text 		Runs 1
		Projects		×	
Input Splitter Equilib Reactor Y New project Summary	Exit Mixer Recycle node	MIDREX_case1 MIDREX_case2_h2 E-waste_Copper 2_1_Smetting_Fig6-7 2_1_Smetting_Fig8 2_2_Slag-forming_Fig9b 2_3_Copper-making_Fig10 Kroll_process_fig12 Kroll_process_Fig12 Kroll_process_Fig13 Kroll_process_Fig15 1_Ferrosilicon	User: FactSage Workshop (0123) Created: Last modified: Tue May 6 17:13:31 2025 CST path: Equi-Cst-Flow/MIDREX.cst Nodes: - Natural gas (0) (Input) - Bypass (1) (Splitter) - Mixer (2) (Mixer) - Reformer (3) (Equilib Reactor) - Bypass mixer (4) (Mixer) - Enrichment (5) (Equilib Reactor) - Natural gas (6) (Input) - Mixer (7) (Mixer) - O2 (8) (Input) - Upper furnace (9) (Equilib Reactor) - Hematite (11) (Input) - Hematite (11) (Input) - Korkhor (12) (Eitited)		
CS1: None Nodes Plots		New Project	- Loop gas (15) (Recycle node) - Splitter (16) (Splitter)		
100		Search Project	- Burner (17) (Equilib Reactor)	Cancel	

Getting Started - Open an example

User manual

FactFlow

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

FactFlow examples are a great way to learn how the software works and explore its capabilities. To open an example, select it from the list and click **Open** in the bottom-right corner.

GactSage[™] GiemApp[™]

Powered by

Try opening the **2_3_Copper-making_Fig10** example. This example reproduces Figure 10 from Section 3.2.3 of the FactFlow paper. In the following steps, we'll walk through how to generate the plot shown in that figure.

Getting Started - Main interface

 \sim

Run Settings

Run Settings

✓ Quantity kg

Unit selection

User manual

FactFlow

File

Run

Run button

Menu bar

About

Help

T °C ∨ P bar ∨ Energy J

Settings

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder

Powered by

FactSage[™]

• Support

overlay control button ¢. Exit Input Node palette Flowsheet canvas 8> Splitter Mixer 8 **•** • Equilib Reactor Recycle node P 2_3_Copper-making_Fig10 Summary CST: Cu-without-E-was... Nodes Gas input (1) Copper input (2) SiO2 input (3) Smelter (4) Navigate: Right-click + drag Project tree Slag output (8) Converter (12) Gas input (13) SiO2 input (14) Phase splitter (16) Gas output (17) SiO2 output (18) Converter (19) ~ · · / / / / /

Show stream text

Stream text

Runs 20

A 14

Max runs and recycling iterations

n X

~ ~

Max recycling iterations 10

FactFlow Getting Started - Run a calculation

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Let's run the example. Click the **Run** button at the top left and wait for the simulation to complete. This example is set up to perform **20** runs, varying the amount of O₂-enriched air input in the second converter. You'll learn how to build your own flowsheet and configure runs later in the guide.

Getting Started - Plot the results

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Once the calculation is complete, **right-click and drag to navigate** to the end of the flowsheet on the right. There, you'll find the **second converter**, modeled as an **Equilib Reactor node** labeled **Converter (19)**. **Double-click** this node to open its **Results** window.

Getting Started - Plot the results

mputo	
Search name	
Name Phase Quantity	
 Matte Liquid 389.796 gas_ideal Gas 240 Iteration 20 ^ v 	

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

To select all phases in the **Outputs** section, click the first phase, then **hold left-click and drag down to the last one**. Alternatively, you can select individual phases by holding **Ctrl and left-clicking each**. Once all desired phases are selected, **right-click** and choose **Plot Analysis** to generate the plot.

Getting Started - Plot the results FactFlow

AnalysisModule

Name

Plot Options

OK

Run

> gas ideal

> Slag-lig#1

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

In the **Plot Options** dialog, simply **click OK**. This will launch the **Analysis Module**, FactFlow's dedicated environment for advanced analysis and visualization. Plot settings and customization options will be covered later in this guide.

X Axis (Horizoi	ntal)	
Title	Run	Font size : 9.00 ^ V
Range	Min : 1	Max : 20 Reset
	Steps: 1.9	
	Format : Auto	✓> Digits after decimal point : 0
Minor gridlines Y Axis (Vertical)	ı ı 0
Minor gridlines Y Axis (Vertical Title) Quantity (kg)	0 Font size : 9.00 ∧ ∨
Minor gridlines Y Axis (Vertical Title Range	Quantity (kg) Min : 0	Font size : 9.00 ^ ~ Max : 349.968 Reset
Minor gridlines Y Axis (Vertical Title Range	Quantity (kg) Min : 0 Steps : 34,9968	r 1 0 Font size : 9.00 ^ ~ Max : 349.968 Reset
Minor gridlines Y Axis (Vertical Title Range	Quantity (kg) Min: 0 Steps: 34.9968 Format: Auto	r i 0 Font size : 9.00 ∧ ∨ Max : 349.968 Reset ✓ > Digits after decimal point : 0

Getting Started - Plot the results

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Congratulations! You've successfully reproduced **Figure 10a** from the **FactFlow paper**. Most figures in the paper were generated directly using the **Analysis Module**, and you'll find a corresponding **FactFlow example** for nearly every one. Feel free to explore them to deepen your understanding. <u>https://doi.org/10.1016/j.calphad.2024.102772</u>

Fig. 10. (a) Phase assemblage evolution during the copper-making step (converter 2) as a a function of the air injection in converter 2.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Prepare your Database

Now that you've completed the guided example, it's time to **build your own simulation from scratch**.

The first step is to define the **chemical system** your process will use.

You'll do this using **FactSage's Equilib module**, which lets you select the relevant elements, species, and phases — and send them directly to FactFlow with a single click.

Prepare your Database

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

TactSage 8.4	👌 Data Search - Equilib 8.4			×	
Information Programs Tools Add-ons Internet A	Databases - 1/27 compound databas	es, 0/25 solution databa	ses		
	Gact GactSage" SGT	E com Com Coulib - Re	eactants		- 🗆 X
actSage 8.4	olytechnit VFactPS FScopp BINS FToxid FSlead SGPS FTsulf FSstel SGTE FTsulf FSustel SGSol FTmisc	sol File Edit Ru nc □ 🚅 + Id 1.4	n Macro Table Units Data Search D	ata Evaluation Help nergy(J) Quantity(mol) Vol(litre)	<u>m - *</u>
Info Calculate	FTOXCN ELEM Othe	/ Add/	uantitu(mol) Species	Phase T(C) P(r)	otall** Streamt Data
Information	FTfrtz	ы <u>ч</u>	H2		
	FTpulp FTlite TDme	ph Refre	02		1
Databases	FTionx FTnucl TDnu	cl + 1	C	<u> </u>	1
	Information -	+ 1	Fe	<u> </u>	
Documentation EpH					
View Data Equilib					
Compound Phase Diagr	am				
	- Options - search for product species				
Solution Calphad Optin	izer gaseous ion	s (plasmas)			
FactSage 8.4 - 2025-03-11-beta	Derault aqueous spo	ecies			Initial Conditions
© 1976-2025 www.fact	Sage.C			N-111	
Thermfact and GTT-Technologies	Cancel	EastCoor 0.4	Company 2/27 databases Column	Next >>	

- 1. Launch the **Equilib module** in FactSage.
- 2. Select the appropriate databases in the Data Search menu.
- 3. **Enter the input species involved in your system.** The quantities can be arbitrary they do not affect the mini-database used by FactFlow.

FactFlow Prepare your Database

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Perform the phase selection by choosing all phases that may form in your system. This	ensures
the generated database includes all relevant phase data.	

Temperature, pressure, and other calculation conditions do not affect the database generation and can be left unchanged.

	T(C	C) P(atm) Energy(J)	Quantity(mol) Vol(litre)	11 🕞 🕒
leactants (4)		H2 + 02	• C + Fe	
Products	- Solution ph	12020		- Custom Solutions
gas (• ideal C real 45 aqueous 0 pure liquids 0 * - pure solids 26 * - custom selection species: 71 Target C anne - Estimate T(K): 1000	Legend I - Inmiscit J - 3-immis	Base-Phase FTilte-Liqu FTilte-A1 FTilte-A2 FTilte-A3 FTilte-A4 FTilte-C14	Full Name Liquid FCC-A1 BCC-A2 HCP-A3 DIAM-A4 Prototype-C C14 Prototype-MgZn2 Show C all C selected species: 44 Select solutions: 14 Select	O fixed activities O ideal solutions Pseudoryms Pseudoryms
Table	T(C)	P(atm)	Product H(J)	Equilibrium rormal C normal + transit transitions only C open

FactFlow Prepare your Database

File Unit: New

Equilib - Menu: last system

Units Parameters Help

Ctrl+N

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Open	Ctrl+O			
Directories	Ctrl+D	H2 + 02 +	C + Fe	
Save	Ctrl+S			
Save As				
Save Equilib Results File		S Phase	Full Name	Custom Solutions Details
Chara Ann Ela		FTlite-Liqu	Liquid	0 ideal solutions
Спетарр піе	>	FTlite-A1	FCC-A1	Pseudonyms
ChemSage File	>	FTlite-A2	BCC-A2	apply 🗂Edit
FactFlow Files	>	Save Fact	Flow file	Volume and physical prop da
FactProSim Files	>	Save Fact	Flow and Run	solids and liquids = 0
		Help		 use only molar volume date use V & phys. property date
Exit				📕 🔽 paraeguilibrium & Gmin e
entity(mol):	I - immiscible J - 3-immiscil	s 5 ble 1 s	how all C selected species:	I total Species (max 7000) 11 I total Solutions (max 200) 11 I total Solutions (max 200) 11 I total Solutions (max 1500) 12
Final Conditions				Equilibrium
<a> 	T(C)	P(atm)	▼ Product H(J) ▼	🗭 normal 🛛 C normal + transiti
	1000	1		C transitions only C open
10 steps 🗖 Table			1 calculation	- no time limit - Calculate >

?(atm) Energy(J) Quantity(mol) Vol(litre)

X

111 🕞 🏴

Send your system to FactFlow by selecting File \rightarrow FactFlow Files \rightarrow Save FactFlow and Run.

This generates the mini database in the background and automatically launches FactFlow with your selected system.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Prepare your Database – Behind the scenes

When you select **Save FactFlow and Run** in the **Equilib** module, FactFlow prepares and stores the files needed for your simulation.

Here's what happens behind the scenes:

- All project files are saved directly inside the **Equi-Cst-Flow** folder in the FactFlow directory. This is the central location where all FactFlow projects are kept.
- Three files are created for your project:
 - .equi file Describes the equilibrium system prepared in Equilib
 - .cst file A compiled binary file representing the mini database (This is what FactFlow actually uses during calculations)
 - .flow file Stores the flowsheet, node configurations, and simulation settings

These files work together to define and run your simulation — there's no need to manage them manually, but it's helpful to understand how they relate.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Build the Flowsheet

Now that FactFlow is launched with your system, it's time to **build your process flowsheet**.

In this section, you'll learn how to model your process using **nodes** — the building blocks of a simulation. You'll place, connect, and configure nodes to represent **inputs**, **reactors**, **splitters**, **outputs**, **and recycling loops**, forming the structure of your simulation.

FactFlow Build the Flowsheet - Units selection

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Before building your flowsheet, **choose the units you'd like to work with**. Use the dropdown menus at the top of the FactFlow window to select units for **temperature**, **pressure**, **energy**, **and quantity**.

You can change these units at any time — they only affect how values are displayed and entered in the interface.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Build the Flowsheet - Node Types

FactFlow simulations are built using interconnected **nodes**, each representing a specific role in the process.

- Input: Defines an input stream, including phase or constituent quantities, as well as its temperature and pressure.
- **Exit**: Retrieves and displays the results of a given output stream for analysis.
- **Equilib Reactor**: Performs an equilibrium calculation using the same algorithm as FactSage.
- **Splitter**: Divides a stream based on flow rate, phase, or state.
- **Mixer**: Combines multiple input streams without performing an equilibrium calculation.
- **Recycle**: Loops part of an output back into the system for iterative convergence.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Build the Flowsheet - Input node All nodes in FactFlow have an **Inspector**, which you can open by clicking on the node. Runs 30 Max recycling iterations 10 text ~ V ~ ~ Name Gas input Temperature (°C) 25 to: 2.6 Pressure (bar) Relative (%) Quantity (kg) 500 One-shot Show active only Gas input (1) Search name Clear Phase constituents Elemental Name Phase Quantity 100 gas ideal Gas 02 43.24

N2

Reacto

5676

Load stream

For the **Input** node, the Inspector allows you

- Set the **temperature** and **pressure** of the input stream
- Define the **stream composition** by entering phase or constituent quantities

You can use the **search box** to quickly locate species and the "Show active only" option to filter for non-zero entries.

Input nodes introduce material into the process and serve as entry points to the flowsheet.

owcreaby
Gact Sage [™]

Powered by

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Build the Flowsheet - Input node

You can define stream composition in two ways: using **absolute quantities** or **relative percentages**. Toggle between modes using the "**Relative (%)**" checkbox in the Input node Inspector.

Absolute entry ("Relative (%)" is off, default)

- Double-click a cell in the **Quantity** column to enter a value
- Total amount is determined by what you input

Name	Phase	Quantity	^
H2O_liquid(liq)	Liquid	80	
CuFeS2_Chalcopyrite(s)	Solid	920	

Relative entry ("Relative (%)" is checked)

- Enter percentage values in the Quantity column
- Total must equal 100

Phase constitue	ents Eler	mental	
Name	Phase	Quantity	^
✓ gas_ideal	Gas	100	
02		43.24	
N2		56.76	

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by **fact**Sage™

	Name No. of inputs 2 Temperature (°C) Pressure (bar)	Reactor ^ Appl 1250 2.6
Reactor (4) Phase	ΔH (J)	853767072.303
	Override	
_	Search phase name	
	gas_ideal	
	🖉 Fe-liq	
	✓ Fe-liq ✓ Cu-liq_or_sp	eiss
	 ✓ Fe-liq ✓ Cu-liq_or_sp ✓ fcc_Fe-Cu ✓ Matte 	eiss
	Fe-liq Gu-liq_or_sp fcc_Fe-Cu Matte FeS-liq Pitzer	eiss
	 Fe-liq Cu-liq_or_sp fcc_Fe-Cu Matte FeS-liq Pitzer Slag-liq#1 	eiss
	 Fe-liq Cu-liq_or_sp fcc_Fe-Cu Matte FeS-liq Pitzer Slag-liq#1 Slag-liq#2 Spinel 	eiss

Build the Flowsheet - Equilib Reactor

~ ~

For the Equilib Reactor node, the Inspector allows you to:

- Set any 2 of the following: Temperature, Pressure, ΔH .
- Number of inputs: Set how many streams feed into this reactor.

To switch which variable is calculated, right-click on it and select "Set as dependent variable."

Temperature (°C)	1250	-
Pressure (Switch to dependent variable	
 АН (I)	ΔH (J)	0
	Pressure (bar)	2.6
	Temperature (°C)	1250

To simulate an adiabatic reaction, set Temperature as the dependent variable and enter $\Delta H = 0$.

iow strea

Ph

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

m text	Runs 3	0 ^ V Max recyclin	ig <mark>i</mark> terations	10	^	~
		Name	Pha	se split	ter	
		No. of outputs 3	~ ~		Apply	
		Split type	Phase			`
		_ Split settings				
	Other outputs (7) Search		$\Box c$	ase sensiti	ve
			Out1	Out2	Out3	
_		gas_ideal	100	0	0	
	T I	Fe-liq	100	0	0	
		Cu-liq_or_speiss	100	0	0	
ase splitter (6)	Flag output (9)	fcc_Fe-Cu	100	0	0	
	Slag Output (8)	Matte	0	0	100	
		FeS-liq	100	0	0	
		Pitzer	100	0	0	
	T	Slag-liq#1	0	100	0	
		Slag-liq#2	100	0	0	
	Matte output (1	Spinel	100	0	0	
		Monoxide	100	0	0	
		N2H4_liquid(liq)	100	0	0	
L		HOOH_liquid(liq)	100	0	0	
		N2O4_liquid(liq)	100	0	0	
		NH4OH_liquid(liq)	100	0	0	
		(NH4)2O_liquid(liq)	100	0	0	
		HONO2_liquid(liq)	100	0	0	
		NH4NO3_liquid(liq)	100	0	0	
		Si_liquid(liq)	100	0	0	
		H2S2_liquid(liq)	100	0	0	

The **Splitter** node is used to divide an input stream into multiple output streams.

Split types:

- **Flow**: Splits the entire stream by total flow percentage.
- **Phase**: Splits the stream by phase (e.g., metal, slag, matte).
- **State**: Splits by state of matter (solid, liquid, gas).

In all modes, percentages determine how much of each part of the stream is routed to each output.

Use Splitter nodes when directing specific parts of a stream to different process paths.

Build the Flowsheet - Splitter node

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Build the Flowsheet - Mixer node

The **Mixer** node combines multiple input streams into a single output without performing an equilibrium calculation.

Mixer (11)	I
	(
-1	0
	I
	1
L	-

Name		Mixer	
No. of inputs	2	<u>~ ~</u>	Apply
Adopt singl	e stream	n T/P	
Temperature (°(_)	25	
^o ressure (bar)		1	

Configuration

- **Number of inputs**: Set how many streams enter the Mixer.
- Temperature & Pressure: These values are imposed on the mixed stream.
- ΔH: Displays the energy required to bring all inputs to the target T/P.

Adopt single stream T/P: If this box is checked and only one non-empty stream enters the Mixer, the Mixer will:

- Ignore the user-specified T/P
- Adopt the temperature and pressure of that single stream

This is useful when using the Mixer as a **pass-through node** — nothing is altered unless multiple streams are present. When multiple streams are non-empty, the Mixer reverts to its standard behavior: mixing them and applying the defined T/P.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings

Other

- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Build the Flowsheet - Exit node

The **Exit** node is used to view the contents of an output stream in your flowsheet.

Temperature (°C) 1250 Pressure (bar) 2.6 Accumulate 2.6 Name Phase Quantity * gas_ideal Gas 750.788 SO2 347.309 N2 N2 317.073 H2O H2O 77.9288 SSO SSO 1.02002 H2S 0.971765 SSO 0.867991 H2 0.172421 HS 0.0502647 S3 0.00803352 Fe(OH)2 0.00774013 H2S2 0.0031688 SO3 0.00187279	Image: Sector Codepute Temperature (°C) 1250 Pressure (bar) 2.6 Accumulate Name Phase Quantity ^ * gas_ideal Gas SO2 347.309 N2 317.073 H2O 77.9288 S2 5.36985 SO 1.02002 H2S 0.971765 SSO 0.8667991 H2 0.172421 H5 0.0502647 S3 0.00003352 Fe(OH)2 0.00714013 H2S2 0.00361868 SO3 0.00187279		Name		Other outpu	its
Interpretative (C) 1230 Pressure (bar) 2.6 Accumulate 2.6 Name Phase Quantity * gas_ideal Gas 750.788 SO2 347.309 N2 N2 317.073 H2O H2O 77.9288 SSO SSO 1.02002 H2S 0.971765 SSO 0.867991 H2 0.172421 HS 0.0502647 S3 0.00803352 Fe(OH)2 0.00774013 H2S2 0.0031688 SO3 0.00187279	Itemperature (C) 1250 Pressure (bar) 2.6 Accumulate Accumulate Name Phase Quantity * gas_ideal Gas 750.788 SO2 347.309 N2 N2 317.073 1420 H2O 77.9288 52 SO3 1.02002 1425 H2S 0.971765 5550 SO3 0.0003352 Fe(CH)2 0.0074013 H2S2 0.00361868 SO3 0.00187279		Tomporature (%		1350	
Pressure (bar) 2.6 Accumulate Accumulate Name Phase Quantity ^	Pressure (bar) 2.6 Accumulate Name Phase Quantity ^		Temperature (C)	1250	
Name Phase Quantity ^ ✓ gas_ideal Gas 750.788	Accumulate Name Phase Quantity ^		Pressure (bar)		2.6	
Name Phase Quantity ^ ✓ gas_ideal Gas 750.788 347.309 SO2 347.309 317.073 H2O 77.9288 52 SO2 0.017765 500 SSO 1.02002 142 H2 0.172421 145 HS 0.0502647 53 SO3 0.00803352 Fe(OH)2 H2S2 0.0031688 503 SO3 0.00187279 User than cut-off limit	Name Phase Quantity ^ * gas_ideal Gas 750.788		Accumulate			
 ✓ gas_ideal Gas 750.788 SO2 347.309 N2 317.073 H2C 77.9288 S2 5.36985 SO 1.02002 H2S 0.971765 SSO 0.867991 H2 0.172421 HS 0.0502647 S3 0.0803352 Fe(OH)2 0.00774013 H2S2 0.00361868 SO3 0.00187279 Lower than cut-off limit 			Name	Phase	Quantity	^
SO2 347.309 N2 317.073 H2O 77.9288 S2 5.36985 SO 1.02002 H2S 0.971765 SSO 0.867991 H2 0.172421 HS 0.0502647 S3 0.08003352 Fe(OH)2 0.00774013 H2S2 0.0031868 SO3 0.00187279 Lower than cut-off limit	SO2 347.309 N2 317.073 H2O 77.9288 S2 5.36985 SO 1.02002 H2S 0.971765 SSO 0.867991 H2 0.172421 H5 0.0502647 S3 0.00803352 Fe(OH)2 0.00774013 H2S2 0.00361868 SO3 0.00187279 Lower than cut-off limit Name Phase Quantity ^ 9 gas_ideal Gas		➤ gas_ideal	Gas	750.788	
N2 317,073 H2O 77,9288 S2 5,36985 S0 1,02002 H2S 0,971765 SSO 0,867991 H2 0,172421 HS 0,0502647 S3 0,00803352 Fe(OH)2 0,0074013 H2S2 0,0031868 SO3 0,00187279 Lower than cut-off limit	N2 317.073 H2O 77.9288 S2 5.36985 SO 1.02002 H2S 0.971765 SSO 0.867991 H2 0.172421 HS 0.0502647 S3 0.0083352 Fe(OH)2 0.00774013 H2S2 0.00774013 H2S2 0.00187279 Lower than cut-off limit Name Phase Quantity ^ gas_ideal Gas		SO2		347.309	
H2O 77.9288 S2 5.36985 SO 1.02002 H2S 0.971765 SSO 0.867991 H2 0.172421 HS 0.00803352 Fe(OH)2 0.00774013 H2S2 0.003152 Fe(OH)2 0.00774013 H2S2 0.00316868 SO3 0.00187279	H2O 77.9288 S2 5.36985 SO 1.02002 H2S 0.971765 SSO 0.867991 H2 0.172421 HS 0.0502647 S3 0.00803352 Fe(OH)2 0.00774013 H2S2 0.00361868 SO3 0.00187279 Lower than cut-off limit Name Phase Quantity ^ gas_ideal Gas _ _	uts (7)	N2		317.073	
S2 S.5.6965 S0 1.02002 H2S 0.971765 SSO 0.867991 H2 0.172421 HS 0.0502647 S3 0.00803352 Fe(OH)2 0.00774013 H2S2 0.00316868 SO3 0.00187279 Lower than cut-off limit	S2 5.36985 SO 1.02002 H2S 0.971765 SSO 0.867991 H2 0.172421 H5 0.0502647 S3 0.00074013 H2S2 0.0074013 H2S2 0.00361868 SO3 0.00187279 Lower than cut-off limit Name Phase Quantity ^ > gas_ideal Gas _		H2O		77.9288	
H2S 0.971765 SSO 0.867991 H2 0.172421 HS 0.0502647 S3 0.0803352 Fe(OH)2 0.00774013 H2S2 0.00361868 SO3 0.00187279 Lower than cut-off limit	H2S 0.971765 SSO 0.867991 H2 0.172421 HS 0.0502647 S3 0.00803352 Fe(OH)2 0.00774013 H2S2 0.00361868 SO3 0.00187279 Lower than cut-off limit Name Phase Quantity > gas_ideal	U	52		5.36985	
SSO 0.867991 H2 0.172421 HS 0.0502647 S3 0.00803352 Fe(OH)2 0.00774013 H2S2 0.00361868 SO3 0.00187279	SSO 0.867991 H2 0.172421 H5 0.0502647 S3 0.000352 Fe(OH)2 0.00774013 H2S2 0.00361868 SO3 0.00187279		50 H25		0.971765	
H2 0.172421 HS 0.0502647 S3 0.0803352 Fe(OH)2 0.00774013 H252 0.0031668 SO3 0.00187279 Lower than cut-off limit	H2 0.172421 HS 0.0502647 S3 0.00803352 Fe(OH)2 0.00774013 H2S2 0.00361868 SO3 0.00187279		SSO		0.867991	
HS 0.0502647 S3 0.00803352 Fe(OH)2 0.00774013 H2S2 0.00361868 SO3 0.00187279 Lower than cut-off limit	HS 0.0502647 S3 0.00803352 Fe(OH)2 0.00774013 H2S2 0.00361868 SO3 0.00187279 Lower than cut-off limit Name Phase Quantity ^		H2		0.172421	
S3 0.00803352 Fe(OH)2 0.00774013 H2S2 0.0031868 SO3 0.00187279	S3 0.00803352 Fe(OH)2 0.00774013 H2S2 0.00361868 SO3 0.00187279 Lower than cut-off limit Name Phase Quantity ^ gas_ideal Gas_das Gas_das 0.00187279		HS		0.0502647	
Fe(OH)2 0.00774013 H2S2 0.00361868 SO3 0.00187279 Lower than cut-off limit	Fe(OH)2 0.00774013 H2S2 0.00361868 SO3 0.00187279 Lower than cut-off limit Name Phase Quantity 2 gas_ideal Gas		53		0.00803352	
H2S2 0.00361868 SO3 0.00187279 Lower than cut-off limit	H2S2 0.00361868 SO3 0.00187279 Lower than cut-off limit Name Phase Quantity ^		Fe(OH)2	2	0.00774013	
Lower than cut-off limit	Lower than cut-off limit Name Phase Quantity ^ Sgs_ideal Gas		H2S2		0.00361868	
Lower than cut-off limit	Name Phase Quantity > gas_ideal Gas		503		0.00187279	
	Name Phase Quantity ^ > gas_ideal Gas		Lower than cu	t-off limit		
Name Phase Quantity ^	> gas_ideal Gas		Name	Phase Qua	ntity	^
> gas_ideal Gas			> gas_ideal	Gas		
				Causa		

The Inspector lists all **phases and constituents**, along with their quantities.

Species below the cut-off limit appear in a separate section.

You can adjust the cut-off limit in Settings:

FactFlow	V				
ile	Set	tings	About	Help	
🔄 Settin	ngs				
Genera	al ——			CActive phase selection	
Quanti	ity cuto	ff 1e-75		Search phase name	
	_			gas_ideal	
- Units -				Fe-liq	
Tempe	erature	°C	~	fcc Fe-Cu	
Dunnan		In an		Matte	
Pressu	ire	Dar		FeS-liq	
Energy	/	J	~	Pitzer	
0		1 m		Slag-liq#1	
Quanti	ity	kg	Y	Slag-liq#2	
				Spinel	
		OK	Cancel	Monovida	

Accumulate: Sums output values across multiple recycling iterations.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Build the Flowsheet - Recycle node

The **Recycle** node allows part of a stream to be sent back to an earlier point in the flowsheet, enabling **Recycling Iterations**.

The **Threshold (%)** setting controls when the recycling loop should stop.

For each phase or constituent, FactFlow checks whether the **percentage change** in quantity between two consecutive iterations is below the threshold.

The loop stops once **all values** meet this condition, or when the **maximum number of recycling iterations** is reached.

$$ext{Threshold} \ (\%) > \left|rac{m_{i,n}-m_{i,n-1}}{m_{i,n-1}}
ight| imes 100$$

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Build the Flowsheet - Connecting nodes

To connect nodes:

- Click and drag from the output port (black square) of one node
- Drop the line onto the input port (white square) of the next node

You can combine nodes freely to represent your process flow.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Configure Run Settings

Now that your flowsheet is built, it's time to configure how the simulation will run.

In this section, you'll learn how to:

- Set how many **runs** to perform (e.g., for parametric studies)
- Set how many **recycling iterations** are allowed (if your flowsheet includes Recycle nodes)
- Vary input conditions across both runs and recycling iterations
- Use the Run Settings panel to assign variables and control simulation behavior

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Configure Run Settings

Understanding Runs vs. Recycling Iterations

When you run a simulation in FactFlow, there are **two layers** of calculation:

- 1. Runs (Parametric Runs)
- Each **Run** represents a **separate simulation** with a **unique set of input values**.
- You can vary inputs like temperature, reactant amount, or pressure across runs.
- Used to perform **parametric studies** and see how outputs change with different conditions.
- 2. Recycling Iterations (Inside each Run)
- If your flowsheet includes a **Recycle node**, FactFlow will perform **multiple internal recycling iterations** *within each Run*.
- These iterations continue until:
 - \circ $\,$ All recycle loops converge (based on the threshold you set), or
 - The Max recycling iterations limit is reached.

FactFlow Configure Run Settings

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Set Runs and Max Recycling Iterations

- **Runs** field: Controls how many parametric runs will be executed.
- **Max recycling iterations** field: Controls the maximum number of iterations per run *if* recycling is active.

Note: In the example shown, there are no Recycle nodes in the flowsheet. Even though the Max recycling iterations is set to 10, no recycling will occur — only one calculation is performed per run.

FactFlow Configure Run Settings - Creating a Run Variable

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

- Click New Run Variable to add a variable.
- Enter the variable's name in the field that appears.
- Rename a variable at any time by double-clicking its name in the variable list.
- In the Value column, enter a range using the format: MIN_MAX
 - Example: 0_900 will vary the value from 0 to 900 across all runs.
 - Steps are automatically divided evenly.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Configure Run Settings - Advanced Intervals

Tip: You can mix fixed values and ranges in the same variable. This is especially useful when working with multiple run variables, allowing you to keep one value constant while varying another.

- Check the box next to a variable to enable Interval Mode.
- This opens a table where you can define multiple **intervals**, each with:
 - A Start and End run index
 - A Value, which can be:
 - A fixed value (e.g., 400)
 - A range (e.g., 560_900), which will be linearly interpolated across the interval
 - Use the Add interval and Remove last interval buttons to manage rows.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Configure Run Settings - Recycle Iteration Variables (Advanced)

Most simulations vary input values across runs, but you can also vary inputs **within each run**, across **recycling iterations**. This feature is especially useful for modeling **parameterized behaviour as a function of the recycling iteration**.

How to Define One:

- Click New Recycle Iteration Variable in the Run Settings panel.
- Enter the variable name and range (MIN_MAX) just like a Run Variable.
- Optionally, enable Interval Mode for finer control across iterations.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

To use a **Run Variable** or **Recycle Iteration Variable**, simply **type the variable's name into any editable input field** in your flowsheet.

Configure Run Settings - Using Variables in the Flowsheet

You can use variables in:

- **Temperature or Pressure** fields of Equilib Reactors
- **Quantities** in Input nodes
- **Percentage splits** in Splitter nodes (more advanced covered later in the Function Builder section) •

Powered by **act**Sage™

FactFlow will automatically substitute the correct value for each run or iteration based on your definitions in the **Run Settings** panel.

Tip: You can use multiple variables in a single simulation to explore combinations of process conditions.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Configure Run Settings - Importing Variables from Excel

You can define **Run Variables** and **Recycle Iteration Variables** by importing them from an Excel file.

- The **first sheet** in the Excel file is used to define variables that vary across **runs**
- The **second sheet**, if present, is used to define variables that vary across **recycling iterations**
- If only one sheet is included, FactFlow will assume it defines Run Variables

Each column defines a **separate variable**, and each row provides the value for a specific run or iteration (starting from 1).

	A	В		A	B	
1	Temp		1	O2_mol	Purity	
2	100		2	1		50
3	200		3	2		50
4	300		4	3		50
5	400		5	4		50
6	500		6	5		50
7	600		7	6		80
8	700		8	7		80
9	800		9	8		80
10	900		10	9		80
11	1000		11	10		80
12	1100		12	11		80
13	1200		13	12		80
14	1300		14	13		80
15	1400		15	14		80
16	1500		16	15		80
17			17			
<	>	Runs Recy	cles <	C > Runs	Recycles	+

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Configure Run Settings - One-shot Input nodes

In flowsheets with recycling, some inputs may only be intended to act **once**, such as an initial dose of fuel, gas, or a reactant.

The **One-shot** checkbox in an Input node allows you to model this behavior:

- When **enabled**, the input node will only provide material during the **first recycling iteration** of each run.
- For all subsequent iterations in that run, the node is effectively **empty** it doesn't inject additional material.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Run the Simulation

With your flowsheet built and variables configured, you're ready to execute the simulation. In this section, you'll learn how to:

- Launch the simulation using the **Run** button
- Interpret node status indicators during execution

Run the Simulation

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Once everything is set up, you can **launch your simulation** by clicking the **Run** button at the top left of the FactFlow window.

While the simulation is running, each node displays a **status icon** to show its current state:

- **Idle** The node is waiting to be calculated.
- Calculating The node is actively processing.
- Success The node completed its calculation without errors.
- **Error** The node encountered an issue.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Analyzing Results

Once your simulation has completed, it's time to explore and interpret the results.

In this section, you'll learn how to:

- View stream results directly from any node
- Use the **Analysis Module** to generate plots and compare results across runs

FactFlow

Analyzing Results

Search name				Search name					
Name				1					
i vuine	Phase	Quantity	^	Name	Phase	Quantity	^	Activity	G
CuFeS2_Chalcopyrite(s)	Solid	920		> gas_ideal	Gas	620.221			
> gas_ideal	Gas	434.483		✓ Matte	Liquid	575.504			
H2O_liquid(liq)	Liquid	80		Cu		307.393		0.0467309	-5.71227E+08
				S		149.22		0.00658013	-7.42042E+08
				Fe		118.891		0.00771199	-3.02666E+08
				 Slag-liq#1 	Liquid	159.94			
				FeO		73.6488		0.444742	-4.43326E+08
				FeS		38.4982		0.245642	-1.32088E+08
				Fe2O3		22.3644		0.0326024	-1.6179E+08
				Fe2S3		12.4376		6.07677E-07	-4.56314E+07
				Cu2O		8.80621		6.00321E-05	-3.24004E+07
				Cu2S		4.18437		0.189183	-1.04014E+07
				SiO2		0		0	0
				SiS2		0		0	0
				Fe2S3 Cu2O Cu2S SiO2 SiS2		12.4376 8.80621 4.18437 0 0		6.07677E-07 6.00321E-05 0.189183 0 0	-4.56314 -3.24004 -1.04014 0 0

After the simulation finishes, you can view the results from **any node** in the flowsheet.

- Double-click a node to open its Results window
- For Exit nodes, results are accessible via the Inspector

The **Results** window displays:

- The **phases and constituents** present at that point in the process
- Their corresponding quantities, activities, and Gibbs energy (G) (when applicable)

For **Equilib Reactor** nodes, you can also click **Export calculation log** to save a detailed record of the equilibrium calculation. This log is the same as what would be generated by **FactSage** for that iteration.

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

FactSage™

FactFlow Analyzing Results - Plotting

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

 Slag-liq#1 	Liquid	159.94		
FeO		73.6488	0.444742	-4.43326E+08
FeS		38.4982	0.245642	-1.32088E+08
Fe2O3		22.3644	0 0326024	-1 6179E+08
Fe2S3		12.4376	Plot analysis	E+07
Cu2O		8.80621	Plot element	al analysis E+07
Cu2S		4.18437	0.189183	-1.04014E+07
SiO2		0	0	0
C ¹ CO				

To create a plot, **right-click** any row in the Results window.

You'll see two options:

- **Plot analysis** Plot quantities for the selected phases and species
- Plot elemental analysis Plot total elemental amounts

Selecting What to Plot

You can select one or more species using standard multi-selection methods:

- Click and drag to select a group
- Shift-click to select a range
- **Ctrl-click** to select or deselect individual rows

This allows you to customize exactly what gets sent to the Analysis Module for plotting.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Analyzing Results - Plotting

Plot Options	>
Run	~
Run	
Recycle Iteration	

👌 Plot Optio	ns		Х
Recycle Iter	ation		~
Run	3	^	~
ОК		Cancel	

Before generating your plot, the **Plot Options** dialog will appear.

This lets you choose what the x-axis of the plot should represent:

- **Run** Plot how values change across parametric runs
- **Recycle Iteration** Plot how values evolve within a single run, across recycling iterations

If you select **Recycle Iteration**, an additional field will appear allowing you to specify **which Run** to analyze. Each run has its own internal recycle history, so this selection determines which run's iterations will be plotted.

Click **OK** to proceed to the Analysis Module with your selected view.

FactFlow Analyzing Results - Plotting

User manual

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

The plot will open in the **Analysis Module** — a dedicated space for exploring and customizing your simulation results.

Here, you can:

- Visualize how selected values change across runs or recycling iterations
- Switch between absolute values and relative percentages (e.g., weight % within a phase)
- Enable log scale, adjust axes, labels, and visual styles
- **Export** the plot as an image or download the data as CSV or Excel

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

FactSage[™]

Advanced Section – Function Builder

You've made it!

By now, you've learned how to prepare your system, build a flowsheet, configure variables, and analyze results.

This next section introduces the **Function Builder** — a powerful tool that lets you define values using **custom formulas**, **mathematical functions**, and even simple **programming logic** like if-else, for, and while.

If you're ready to go beyond basic variable inputs, this tool gives you full control.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Function Builder - Custom formulas

In any numeric input field, you can enter not just a number or variable name — but a **mathematical expression** using the Function Builder.

You can use:

- Basic arithmetic: +, -, *, /, ^
- Parentheses for grouping: (A + B) / 2
- Math functions: sqrt(x), log(x), exp(x), abs(x), min(a, b), max(a, b)
- Constants: pi, e

You can also reference any Run Variable or Recycle Iteration Variable by name.

No. of inputs	4	~~	Apply
Temperature (°C)		200*log	(i*30)
Pressure (atm)		1	

Built-in variables

- **run** \rightarrow the current run index (starting from 1)
- $i \rightarrow$ the current recycling iteration index (starting from 1)

Expressions are evaluated automatically for each run or iteration, allowing fully dynamic behavior.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder

Powered by

actSage"

Support

Function Builder - Custom formulas

In addition to input fields, mathematical expressions can also be used in the **Value** column of the Run Settings panel — both in **basic** and **interval** modes.

This is especially powerful when using **Recycle Iteration Variables**, which can model **parameterized behaviour** as a function of the recycling iteration.

Example: Suppose you're simulating an oxidation step in a converter. Air flow can be increased with each iteration depending on user setting:

This allows you to model:

- A diffusion-limited stage
- A steady-state plateau

All within a single simulation run.

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings

Custom Splitter

- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Function Builder - Splitter

In addition to using the Function Builder in input fields and variables, you can also use it directly in the **Splitter** node to control how material is routed between outputs. To enable this, set the **Split type** to **Function Builder** in the node's Inspector.

Instead of assigning fixed split percentages, the Function Builder lets you use **formulas** and **conditional logic** (if, else if, else) to dynamically control the split based on the input stream's composition or conditions.

	Name		Custom Splitter		
	No. of outputs	3	^ v	Apply	
	Split type	Split type		Function Builder	
	Split settings				
	Function Builder				
	<pre>var zn_quantity; var liquid_quant var impurity := z if (\$temp\$ < 400 output[0] := 5 output[1] := 2 output[2] := 3 } else if (impurity output[0] := 1 } else if (impurity output[1] := 1 } else { var percentag output[0] := p output[1] := p output[2] := p }</pre>	<pre>var liquid_quantity := \$LIQUID#1\$; var impurity := sLIQUID#1\$; var impurity := zn_quantity / liquid_quantity * 100; if (\$temp\$ < 400) { output[0] := 50; output[1] := 20; output[1] := 20; output[2] := 30; } else if (impurity < 1) { output[0] := 100.0; } else if (impurity < 10) { output[1] := 100.0; } else { var percentage := 100.0 / N; output[0] := percentage; output[1] := percentage; output[2] := percentage; output[2] := percentage; output[2] := percentage; output[2] := percentage; output[2] := percentage;</pre>			

In this example, the output is split differently depending on the **temperature** and the **Zn impurity** in a liquid phase.

Built-in Variables for Splitters

- \$Phase\$ or \$Phase/Constituent\$ quantity in the input stream
- **\$temp\$, \$pressure\$** input stream conditions
- output[index] array for assigning output split percentages
- N total number of outputs

- What is FactFlow?
- About This Manual
- Getting Started
- Prepare your Database
- Build the Flowsheet
- Configure Run Settings
- Run the Simulation
- Analyzing Results
- Function Builder
- Support

Powered by

Support

We hope this guide has helped you get the most out of FactFlow and explore its full potential.

Should you run into any issues, have suggestions, or want to share feedback, we'd love to hear from you. Please don't hesitate to reach out at <u>factflow@polymtl.ca</u>.

Our team is here to help and always looking for ways to improve your experience with FactFlow.