

Department of Materials Science and Engineering

Thermodynamics of High and Ultrahigh Temperature Ceramics

Phase diagrams, Chemical reactions,

Computational thermodynamic database -

In-Ho Jung

Seoul National University, Seoul, South Korea

Professor In-Ho Jung Tel : 82-2-880-7077 E-mail: in-ho.jung@snu.ac.kr

http://in-ho-group.snu.ac.kr/

- Review of Engineering Thermodynamics
- Computational thermodynamic database
 - Development of CALPHAD thermodynamic database
 - Application to high temperature refractories
 - Application to ultra-high temperature ceramics

REVIEW OF ENGINEERING THERMODYNAMICS

COMPUTATIONAL THERMODYNAMIC DATABASE

G = H – TS; G: Gibbs Energy, H: Enthalpy, S: Entropy

1. For pure element or pure compound (AI, O₂, AI₂O₃, etc.)

$$G_{T}^{o} = H_{T}^{o} - TS_{T}^{o}$$

$$H_{T}^{o} = [\Delta H_{298\,K}^{o}] + \int_{298\,K}^{T} C_{p} dT \qquad S_{T}^{o} = (S_{298\,K}^{o}) + \int_{298\,K}^{T} \frac{C_{p}}{T} dT \qquad : C_{p} = a + bT + cT^{2} + dT \ln T + \cdots$$

$$is \ known \ (measurable)$$
Enthalpy for compound at 298 K with reference of pure stable elemental species at 298 K and 1 atm ($H_{0K}^{o} \neq 0$, unknown) Standard entropy at 298 K ($S_{0K}^{o} = 0$)

Standard reference state for H : $\Delta H_{298K}^{o} = 0$ Fe(bcc), Fe(fcc), Fe(I), H₂O(I), H₂O(g), H₂(g), O₂(g), O(g), CaO, FeO, C(s), CO₂, CO,.

* In FactSage compound database, ΔH_{298K}^{o} , S_{298K}^{o} , C_{p} are stored to calculate Gibbs energy of solid, liquid and gas species

2. Chemical reaction between pure compounds (No solution)

$$nA + mB = A_nB_m$$

$$\Delta G_{r,x,n}^{o} = G_{A_n B_m}^{o} - (nG_A^{o} + mG_B^{o})$$
$$= \Delta H_{rxn}^{o} - T\Delta S_{rxn}^{o}$$

In many thermo books, these ΔH_{rxn}^o , ΔS_{rxn}^o are given. These values are not absolute values, but dependent on each chemical reaction. \rightarrow In the FactSage, absolute Gibbs energy of each species (relative to elemental species) is stored. Then, any reaction Gibbs energy can be automatically calculated from the Gibbs energy of each species.

3. Chemical reaction involving gas

 $nA + mO_2(g) = A_nO_{2m}$

$$= \Delta G_{rxn}^{o} - mRT \ln P_{O_2}$$

At Equilibrium state $\Delta G_{rxn} = 0$

$$\Delta G_{rxn}^{o} = -RT \ln(\frac{1}{P_{O_2}})$$

3. Chemical reaction involving gas (continue)

In general, for aA + bB(g) = cC + dD(g)

At Equilibrium

$$\Delta G_{rxn}^{o} = -RT \ln\left(\frac{P_D^d}{P_B^b}\right)$$

$$\Delta G_{rxn}^{o} = -\mathsf{R} T \ln K_{eq}$$

 K_{eq} : Equilibrium constant

Gibbs Energy

4. Chemical reaction involving solid or liquid solution

$$G_{i(in \ soln)} = G_{i(pure)}^{o} + (RT\ln(a_i))$$

a: activity

change of Gibbs energy of *i* in solution by interacting with surrounding species

Definition of activity

$$a_A = \frac{P_A}{P_A^o} = \gamma_A x_A$$

 \div activity is movement of species in solution

Gibbs Energy

4. Chemical reaction involving solid or liquid solution

Definition of activity

(+) deviation: repulsion between *i* and other species $\rightarrow a_i > x_i$: more active chemical reaction of *i*

(-) deviation: attraction between *i* and other species $\rightarrow a_i < x_i$: less active chemical reaction of *i*

In general, for aA + bB(g) = cC + dD(g)

$$\Delta G_{rxn} = \sum G_{products} - \sum G_{reactants}$$

At Equilibrium

$$\Delta G_{rxn}^{o} = -RT \ln(\frac{a_C^c P_D^d}{a_A^a P_B^b})$$

* FactSage solution database contains the model and model parameters to calculate G_i and eventually get a_i

In most of thermodynamic book, we always calculate equilibrium condition

$$\Delta G_{rxn} = 0 \quad \longrightarrow \Delta G_{rxn}^{o} = -RT \ln K_{eq}$$

But in reality, we want to first know the direction of reaction

(continue)

- → We have to find out which phase assemblage is the most stable at given T_f and P_f with respect to the mass balance.
- \rightarrow Gibbs energy minimization routine: ChemSage, Solgas-mix, etc.

The most stable phase assemblage has the lowest Gibbs energy.

In FactSage

- i) Put inputs amount
- ii) Select all possible phases (solid compounds, solid solutions, liquid solutions, gases)
- iii) Set T_{final} and P_{final}
- iv) Calculation (Gibbs energy minimization routine)
- v) Equilibrium phase assemblage

Ellingham Diagram

Ellingham Diagram

- Collection of ΔG° for oxidation reaction $mA + O_2 = A_mO_2$ (reference: 1 mol of O_2)

- Only consider for pure species. (No solutions are considered.)

$$A + O_2 = AO_2$$

$$\Delta G = \Delta G^o + RT \ln \frac{(a_{AO_2})}{(a_A) (p_{O_2})} , (\Delta G = 0: Equilibrium)$$

$$\Delta G^o = RT \ln p_{O_2}$$

$$\Delta G^o = (R \ln p_{O_2}) \times T$$

Solution thermodynamics

A-B solution, (Solid or Liquid solution) $G_{solution} = \sum x_i G_i$ $G_i = G_i^o + RT \ln a_i$ G_i: partial Gibbs energy of *i* in solution g_B^o $g_{solution}$ g_A^o Δg_{mix} $g_A = g_A^o + RT \ln a_A$ $g_{R} = \mu_{R}$ Tangent line $RT \ln a_A$ $g_A = \mu_A$ X_{B} – μ_i : Chemical potential of *i* $=(x_{A}G_{A}^{o}+x_{B}G_{B}^{o})+RT(x_{A}\ln a_{A}+x_{B}\ln a_{B})$

A-B solution (Solid or Liquid solution) $G_{soln} = (x_A G_A^o + x_B G_B^o) + RT(x_A \ln a_A + x_B \ln a_B)$

1. Ideal solution: $\gamma_A = 1, \gamma_B = 1$

$$G_{soln} = (x_A G_A^o + x_B G_B^o) + RT(x_A \ln x_A + x_B \ln x_B)$$

2. Regular solution: $RT \ln \gamma_A = \Omega_{AB} x_B^2$ Ω : Regular solution parameter $G_{soln} = (x_A G_A^o + x_B G_B^o) + RT(x_A \ln x_A + x_B \ln x_B) + \Omega_{AB} x_A x_B$

A-B solution, (Solid or Liquid solution) $G_{soln} = (x_A G_A^o + x_B G_B^o) + RT(x_A \ln a_A + x_B \ln a_B)$

3. General solution: $\gamma_A = f(x,T)$

$$G_{soln} = (x_A G_A^o + x_B G_B^o) + RT(x_A \ln x_A + x_B \ln x_B) + G^{ex}$$
$$G^{ex} = \sum_{i, j \ge 1} \omega_{AB}^{ij} x_A^i x_B^j$$

* FactSage supports many complex solution models. Solution database (FToxid, FTSalt,) contains optimized model parameters reproducing Gibbs energy of solution.

 \rightarrow Phase diagram is the collection of minimum Gibbs energy assemblage of given system with temperature.

Porter, D.A., and Easterling, K.E., Phase Transformation in Metals and Alloys, 2nd Ed. CHAMAN & HALL (1992)

Ternary phase diagram: isothermal phase diagram

Ternary phase diagram: Liquidus projection

Advantage of thermodynamic database

FactSage calc.: Multicomponent phase equilibria includ
 - for example, Spinel/Slag/Monoxide

GINEERING

COLLEGE OF ENGINEERING SEOUL NATIONAL UNIVERSITY 서 울 대 학 교 공 과 대 학 wt.% cr203 **20 ↓actSage**[™]

wt.% MqO

wt.% A1203

+ 91.310

+ 0.18976

+ 8.3998

Development of Thermodynamic Database

Phase diagram data

- Phase diagram
- S/L/G phase equilibria

Crystal Structural data

Thermodynamic data

- Calorimetric data: Heat capacity, H of mixing, H of melting, etc.
- Vapour pressures
- Chemical Potentials: activity

Pure compound

- ≻ emf
- Knudsen cell
- Vapor pressure

Solution

- emf (activity)
- Knudsen cell (activity)
- Vapor pressure (activity)
- Solution calorimetry (enthalpy)
- Phase diagram

jactSage[™]

F*A*C*T + ChemSage: CRCT, Canada + GTT Tech., Germany www.crct.polymtl.ca, www.factsage.com TD: Oxide (slag, inclusion, refractory), Salt, Steel, Light alloy (very good) Fully Window Interface

KTH, Sweden, www.thermocalc.se TD: Steel, Light Alloy (very good) + poor Oxide DICTRA (Diffusion Process) DOS Interface, Window Interface

NPL, UK, www.npl.co.uk/npl/cmmt/mtdata TD: Oxide, Salt, Steel, Light alloy (good) Window Interface

SGTE (Europe + Canada + US), www.sgte.org Orginazation of Database Development

23

Available Thermodynamic Database – Refractories

Steelmaking, Non-ferrous and Cement industry

- MgO-C, AI_2O_3 -MgO, MgO-Cr₂O₃, Mullite, Olivine, ZrO₂-based, AI_2O_3 -SiC type refractories:
- Reaction with slags, atmosphere, liquid metals
- Refractory mineral phases
 - ✓ Monoxide: MgO-FeO-MnO-CaO
 - ✓ Spinel: (Mg,Mn,Fe,..)[Al,Cr,Fe,..]₂O₄
 - ✓ Olivine: (Mg,Mn,Ca,Fe,..)₂SiO₄
 - ✓ (CaO)_x(Al₂O₃)_y.....
 - ✓ Si-C-N-O..
 - ✓ Cr⁶⁺ : in progress
- Slag phase:

 $CaO-MgO-Al_2O_3-SiO_2-FeO-Fe_2O_3-MnO-Ti_2O_3-TiO_2-CrO-Cr_2O_3-ZrO_2-P_2O_5\dots-S-Fe_2O_3-TiO_2-CrO-Cr_2O_3-ZrO_2-P_2O_5\dots-S-Fe_2O_3-TiO_2-CrO-Cr_2O_3-ZrO_2-P_2O_5\dots-S-Fe_2O_3-TiO_2-CrO-Cr_2O_3-ZrO_2-P_2O_5\dots-S-Fe_2O_3-TiO_2-CrO-Cr_2O_3-ZrO_2-P_2O_5\dots-S-Fe_2O_3-TiO_2-CrO-Cr_2O_3-ZrO_2-P_2O_5\dots-S-Fe_2O_3-TiO_2-CrO-Cr_2O_3-ZrO_2-P_2O_5\dots-S-Fe_2O_3-TiO_2-CrO-Cr_2O_3-ZrO_2-P_2O_5\dots-S-Fe_2O_3-TiO_2-CrO-Cr_2O_3-ZrO_2-P_2O_5\dots-S-Fe_2O_3-TiO_2-CrO-Cr_2O_3-ZrO_2-P_2O_5\dots-S-Fe_2O_3-TiO_2-CrO-Cr_2O_3-ZrO_2-P_2O_5\dots-S-Fe_2O_3-ZrO_2-P_2O_5\dots-S-Fe_2O_3-TiO_2-CrO-Cr_2O_3-ZrO_2-P_2O_5\dots-S-Fe_2O_3-TiO_2-TiO_2-TiO_2-TiO_2-TiO_2-P_2O_5\dots-S-Fe_2O_3-TiO_2-$

- Liquid metallic phase
 - ✓ Fe, Ferro-alloy, Al, Mg, Si, Cu, ...

Glass, Biomass combustion, and Coal combustion industry

- K₂O, Na₂O, Li₂O containing slags: Glass and Biomass application
- V oxide containing slags: Coal combustion in progress
- Sulphate containing slags: Coal combustion in progress

act Sage"

Applications of phase diagram: Case Study

MgO solubility in slags

- CaO-MgO-SiO2 Phase diagram vs. MgO solubility
- BOF slag, LF slag
- Multicomponent slag with CaF2

Melting temperature of MgO and MgCr2O4

- Impurity
- Oxygen partial pressure

Other Slag – Refractory Interactions

- Ladle glaze
- Purging plug cleaning process

Non-metallic inclusions – Stopper

Nozzle refractory

- Carbothermal reduction process
- Inclusion formation

MgO solubility in slags

- CaO-MgO-SiO2 Phase diagram vs. MgO solubility
- BOF slag
- Multicomponent slag with CaF2
- LF slag

CaO-MgO-SiO₂ phase diagram

Refractory: CaO-Fe_tO-SiO₂-5wt%MgO system with Fe saturation

Refractory reaction with F containing slag/flux

EOUL NATIONAL UNIVERSIT 대 학 교 공 과 대 학

MgO solubility in CaO-SiO₂ and CaO-Al₂O₃ based slags

MgO solubility in the CaO-Al₂O₃ based slags is much lower than that in the CaO-SiO₂ based slags

31

Ladle Furnace (LF) slag

JactSage^m

Contents

Other Slag – Refractory Interactions

- Ladle glaze
- Purging plug cleaning process

Ladle Glaze

- Reactions with Ladle refractory lining
- Formation of non-metallic Inclusions

Purpose of the present study

- Glaze formation mechanism / Glazed refractory
- Influence on melt cleanliness (inclusion): AI, AI/Ca

Glaze (Reaction product of slag and refractory)

35 GactSage[™]

Corrosion of Ladle purging plug by Fe oxides

Purging plug: Low- or ultra-low-cement castable (LCC or ULCC) in the Al₂O₃-MgO-CaO system: Corundum + Spinel

Corrosion during frequent cleaning operations of the clogged purging plug surface by "oxygen lancing"

CaO free castable is better against chemical corrosion by high Fe oxide slag

 O^2

 $2Fe + 3/2O_2 = Fe_2O_3$

Melting temperature of MgO and MgCr₂O₄

- Impurity
- Oxygen partial pressure

Melting temperature of MgO

Melting temperature of (1) pure MgO = 2825 °C

(2) impure MgO ?

38

JactSage[™]

Melting temperature of MgO

Nozzle refractory

- Carbothermal reduction process
- Inclusion formation

Nozzle clogging

Carbothermic reduction of ZrO₂ to ZrC

ZrO₂ + C = ZrC + CO(g) Ar+CO gas formation

Formation of Al₂O₃ in Nozzle: Al killed steel

Nozzle clogging in Al-Ti killed steel

Reoxidation of steel by CO gas through ceramic nozzle to form slag(Al-Ti-O) and Al₂O₃

Ultra High Temperature Ceramics

- Ceramic Matrix Composites (CMC)
- TBC coating: ZrO₂ stabilized by CaO, Y₂O₃, etc.)
- Self-healing materials

Ultra High Temperature Ceramics

ENCINEERING COLLEGE OF ENGINEERING SEOUL NATIONAL UNIVERSITY 서울대학교공과대학

Carbides, Nitrides, Borides, Silicides (SpMCBN database)

- All ultra high temperature ceramics
- Oxygen, all other gas species
- Oxides (solid and liquids solutions)

ZrO2-RE2O3 based Oxide

- ZrO₂-CaO, MgO,
- ZrO₂-RE₂O₃ are not available in progress

Oxidation

- Carbide \rightarrow Oxides
- ZrC, HfC, SiC

Evaporation

• $SiO_2 \rightarrow SiO$ gas

CMC

- SiC/SiC_f
- Self healing CMC

ZrO_2 -CaO and ZrO_2 -RE₂O₃

Oxidation: HfC

Oxidation: ZrC

51

GactSage[™]

Oxidation: SiC

52

GactSage™

Definition of problem

Solution: addition of xO, xC, yO, yC

Selection criteria of cubic HfO₂ stabilizer

(i) No melting at 2500 °C

(ii) No (less) solid solution with HfC below 2000 $^{\circ}$ C – high thermal conductivity

(iii) Effective stabilizer with small amount

 \rightarrow Design the materials based on thermal stability and chemical reactions (phase diagrams)

Evaporation: $SiO_2(I) \rightarrow SiO(g)$

Evaporation: $SiO_2 + C \rightarrow SiO(g) + CO(g)$

55

GactSage[™]

Self healing CMC

 $SiC + 2O_2 \rightarrow SiO_2 + CO_2$

 $2\mathsf{AI} + 2\mathsf{B} + 3\mathsf{O}_2 \xrightarrow{} \mathsf{AI}_2\mathsf{O}_3 + \mathsf{B}_2\mathsf{O}_3$

SiO₂ + Al₂O₃ + B₂O₃ \rightarrow Liquid + Solid oxide SiC + (AI-B)metal // C (Liquid can fill up the gap)

Self healing mechanism: Al₂O₃-B₂O₃-SiO₂ system

Self healing mechanism: Al₂O₃-B₂O₃-SiO₂ system

Materials Design and Structure Design

- Si-B-C + Al \rightarrow not good at high temperature because Liquid can be pulled out.
- Si-B-C + porous Al₂O₃ \rightarrow same chemistry but may be Good structure

TBC coating: Cubic HfO₂ and ZrO₂ stabilization

ZrO₂-Re₂O₃ phase diagram (Predicted)

H. Yokokawa, N. Sakai, T. Kawada. (1993), Science and technology of Zirconia V, pp. 59-68.

60

ZrO₂-CaO

Phase diagram is one of the most fundamental knowledge for the materials design and process optimization

- Continuous support for the experimental phase diagram study and thermodynamic properties measurement are necessary.
- Computational thermodynamic database, such as FactSage, is an useful tool for complex phase diagram and chemical reaction analysis.

Acknowledgement

Steelmaking consortium project (2009~2020) – 2018 Annual meeting, Seoul, Korea

