DATABASE SELECTION FOR FERROUS APPLICATIONS

FactSage[™]

Contents

Topics	Slide #
FactSage databases for steelmaking: History and important solution phases	<u>3</u>
Steelmaking chemistry and availability of database	<u>10</u>
Important phase diagrams for steelmaking processes	<u>12</u>
Modified Quasichemical Model	<u>37</u>
Slag viscosity database	<u>43</u>

FactSage databases for steelmaking applications

Brief History of Database Development Important Solution Phases for Steelmaking Applications

In-Ho Jung and Marie-Aline Van Ende, "Computational Thermodynamic Calculations: FactSage from CALPHAD Thermodynamic Database to Virtual Process Simulation", Metall. Mater. Trans. B, 2020, vol. 51, pp. 1851–1874. (Matall. Mater. Trans. 50th anniversary collection – invited paper)

I.-H. Jung, "Overview of the applications of thermodynamic databases to steelmaking processes", Calphad, 2010, vol. 34, pp. 332-362.

Brief History of FactSage Database Development

1976~2001: FACT \rightarrow 2001~present: FactSage (a fusion of FACT + ChemSage)

< 1998 : FACT database (before 1998)

1999~2003 : FACT53 database

2000~2004 : FACT Consortium project (2000~2004): 16 companies pyrometallurgy (ferrous, non-ferrous), hydrometallurgy-corrosion, glassmaking - FACT53 database → FToxid, FTmisc, FThall, FTsalt, FThelg,..

- New alloy databases: FSstel, FSlite, FScopp, SGTE,

2004~2010 : Mini-consortiums

- Al consortium (Alcoa, Alcan, and Norsk-Hydro)
- Glass consortium (Corning, Schott, and Saint-Gobain)
- Light alloy (AI, Mg) consortium (AI consortium, GM, MagNET): FTlite

2009~present : Mini-consortiums

- Al consortium (3 companies), Glass consortium (3 companies)
- Steelmaking consortium: 11 companies → Consortium database ('CON3')

Databases in FactSage for Steelmaking Applications

FactPS (pure substances database): All gaseous species, stoichiometric solid and liquid species (organic, inorganic) \rightarrow Similar to thermodynamic tables like JANAF, Barin-Kubaschewski. (When you need a "Gas" phase you always have to select this database).

FToxid: Frequently updated oxide database containing

- many solution phases (slag, spinel, monoxide, olivine, etc.)
- pure solid and liquid oxides, no gas phase

FTmisc: FeLq solution

- most reliable liquid steel database for steelmaking calculations

(slags/refractories/gases/molten iron)

FSstel: solid and liquid steel phases

(also includes a small number of gases, oxides, sulfides, nitrides, etc.)

- for steel solidification and alloy design.
- liquid steel: reasonable calculations for steelmaking applications

 \rightarrow For steelmaking calculations:

priority: FToxid > FeLq > FactPS

(In the FactSage 6.4 and later versions, the best selections of compounds among multiple compound databases are provided automatically. But solutions must be selected carefully.)

FToxid database

The four character in red give the name of each solution phase

Main solution phases when T > 1550°C (steelmaking)

Slag (I option): CaO-MgO-Al₂O₃-SiO₂-FeO-Fe₂O₃-MnO-Mn₂O₃-Ti₂O₃-TiO₂...Na2O-K2O-Li2O-BaO-SrO-

+ Gas solubility such as S (SO₂), P, H (OH), N, C, F, ...

- All oxide components + sulfides: valid for liquid oxy-sulfide solution over a wide range

- All oxide components + fluorides: mostly valid for (Ca,AI,Mg,Si,Na,K,Li//O,F): up to ~ 50% fluoride. 8.1 version: V oxide (V2+, 3+, 4+, 5+) in the CaO-MgO-Al2O3-SiO2-FeO-Fe2O3-Na2O slag for L_V calculation

Spinel (I option) (SPIN): (Mg,Fe,Mn,Co,Ni,Zn)(AI,Fe,Cr,Co,Mn,Va)₂O₄, extensive solid solution containing MgAl₂O₄, MgCr₂O₄, MgFe₂O₄, FeCr₂O₄, Fe₃O₄, FeAl₂O₄, Cr₃O₄, MnAl₂O₄, MnCr₂O₄, MnFe₂O₄, etc.

■ a-, a'-Ca2SiO4 (aC2S, bC2S): Ca₂SiO₄ (C₂S)-rich solution with limited solubility of Mg₂SiO₄, Fe₂SiO₄, Mn₂SiO₄,etc.

Olivine (Oliv): Mg₂SiO₄, Fe₂SiO₄, etc. (Mg,Fe,Ca,Mn,Ni,Zn,Co,Cr,etc.)₂SiO₄, covering forsterite (Mg₂SiO₄), fayalite (Fe₂SiO₄), γ-Ca₂SiO₄, monticellite CaMgSiO₄, tephroite Mn₂SiO₄.

• Corundum (CORU): $(AI,Cr,Fe,Mn)_2O_3$ solution, the solution of AI_2O_3 , Cr_2O_3 , Mn_2O_3 and Fe_2O_3 . Solid miscibility gaps exist between the constituents.

Monoxide (halite) (MeO_): solution of CaO-MgO-FeO-MnO-NiO-Fe₂O₃-Al₂O₃-Cr₂O₃ etc. Major constituents: lime (CaO), periclase (MgO) and wustite (FeO).

Mn/Ti oxides:

i) ilmenite **(ILME)**: (FeTiO₃(ilmenite)–Ti₂O₃–MgTiO₃–MnTiO₃ + Al₂O₃), ii) pseudo-brookite **(PSEU)**: (Ti₃O₅–FeTi₂O₅-MgTi₂O₅–MnTi₂O₅), iii) Ti-spinel **(TiSp)**: (Mg,Fe,Mn)[Mg,Fe,Mn,Ti,Al]₂O₄ iv) Rutile (TiO₂):TiO₂ + Ti₂O₃-ZrO₂ solid solution

• Mullite (Mull): non-stoichiometric Al₆Si₂O₁₃ with possible solubility of B and Fe oxide.

Melilite (Mel_): Ca₂[Mg,Fe²⁺,Fe³⁺,Al](Fe³⁺,Al,Si)₂O₇. Akermanite Ca₂MgSi₂O₇ and gehlenite Ca₂Al₂SiO₇ form the melilite solid solution stable below 1590 °C.

Main additional solution phases when T < 1550°C (solidification of slag): (Including all above phases + additional phases below)

- Wollastonite (Woll): (Ca,Mg,Mn)SiO₃, which is a CaSiO₃-rich phase stable below 1300 °C.
 Pseudo-wollastonite is stoichiometric CaSiO₃ stable below 1550 °C.
- Pyroxene (pPyr, oPyr, cPyr): (Mg,Ca,Fe)[Mg,Fe]Si₂O₆, which is a MgSiO₃-rich phase stable below 1560 °C. Proto-, ortho-, low-clino-pyroxene exist. Clino-pyroxene is a CaMg₂SiO₆-rich phase, which is stable below 1390 °C.
- Rhodonite (Rhod): (Mn,Ca)SiO₃, a MnSiO₃-rich solid stable below 1300 °C.

Main additional solution phases in the CaO-Al₂O₃-SiO₂-Fe_tO system at high PO₂ (air)

CAFS $Ca_2(AI,Fe)_8SiO_{16}$, **CAF6** $Ca(AI,Fe)_{12}O_{19}$, **CAF3** $Ca(AI,Fe)_6O_{10}$, **CAF2** $Ca(AI,Fe)_4O_7$ **CAF1** $Ca(AI,Fe)_2O_4$, **C2AF** $Ca_2(AI,Fe)_2O_5$, **C3AF** $Ca_3(AI,Fe)_2O_6$

Main additional solution phases when T < 1550°C (mold flux, Na₂O-containing systems)

- Nepheline (Neph): NaAlSiO₄ with excess SiO₂.
- Carnegeite (Carn): NaAlSiO₄ with excess SiO₂.
- NaAIO2 (NASI): low temperature NaAIO₂ with excess NaAISiO₄
- NaAIO2 (NASh): high temperature NaAIO₂ with excess NaAISiO₄
- Combeite (NCSO): Na₄CaSi₃O₉ (bombeite) Na₂Ca₂Si₃O₉ solid solution
- Feldspar (Feld): complete solution between Anorthite(CaAl₂Si₂O₈)-Albite(NaAlSi₃O₈)
- NCA2: (Na₂,Ca)O·Na₂O·2Al₂O₃ solid solution
- C3A1: Ca₃Al₂O₆ dissolving Na₂O, (Ca,Na₂)1Ca₈Al₆O₁₈ solution
- Many other Na, K, Li silicate solid solutions.

FeLq

Liquid Fe containing Ag,AI,B,Ba,C,Ca,Ce,Co,Cr,Cu,H,Hf,La,Mg,Mn,Mo,N,Nb,Nd,Ni,O,P,Pb,Pd,S,Si, Sn,Ta,Th,Ti,U,V,W,Zr. This phase is better suited for calculations involving iron and steelmaking processes (optimized for iron-rich solutions only).

- → Based on the Unified Interaction Parameter Formalism (more advanced than classical Wagner Interaction Parameter Formalism) with associate model for deoxidation. Many interaction parameters between metallic elements are taken from JSPS (Japanese compilation)
- \rightarrow Ca and Mg deoxidation were adjusted a bit (lower solubility limit of Ca and Mg) in FactSage 7.3.

FSstel database

• FCC/BCC: Fe / Carbide / Nitride are all treated as FCC phases

- \rightarrow Fe with N and C : use J option (possible 3-phase immiscibility) default option.
- \rightarrow Fe with N or C : use I option (possible 2-phase immiscibility).
- \rightarrow Also recommend to use I option for BCC phase. default option.
- See Fe-Ti-Nb-C-N example.
- Liquid: O, S, N, P are all described by MQM. Many binary and ternary liquid system are modeled by MQM.

• FCC ordered phase (FCC_L12), BCC ordered phase (BCC_B2) slow down the calculations significantly. If not really interested in order/disorder transitions, do not select these phases.

Carbon: when C content is lower than ~ 1%, Fe_3C (metastable) phase is normally formed instead of C (stable). So, in the selection of solid phases, "deselect" C solid.

Steelmaking Chemistry and Availability of Databases

The important chemical systems of non-metallic phases for steelmaking processes can be summarized as follows. All of these are modeled in the FactSage databases.

Database availability for general steelmaking processes: Green: available in 7.0; Red: available 8.0; blue: available in 8.1

- 1) Molten slag for refining processes
- a) CaO-FeO-Fe₂O₃-SiO₂-MgO-MnO-P₂O₅ system: BOF process
- b) CaO-MgO-Al₂O₃-SiO₂-FeO-Fe₂O₃ system: ladle refining process
- c) CaO-MgO-SiO₂-CaF₂ system: stainless steel refining
- d) CaO-CrO-Cr₂O₃-MgO-SiO₂ system: AOD and VOD process for stainless steel
- e) CaO-MgO-SiO₂-MnO-CrO-Cr₂O₃ system: high-Mn stainless steel

f) CaO-MgO-SiO₂-Al₂O₃-FeO-Fe₂O₃-V oxide system: V containing steel & Fe-V smelting process

2) Mold flux for casting processes

- a) CaO-MgO-Al₂O₃-SiO₂-Na₂O-K₂O-Li₂O-F system: conventional process
- b) BaO-SrO-CaO-MgO-Al₂O₃-SiO₂-Na₂O-B₂O₃ system: new candidate.

3) Non-metallic inclusions

- a) CaO-Al₂O₃-MgO-CaS: conventional low carbon steels
- b) MnO-SiO₂-Al₂O₃-CaO-MnS: wire steels and free cutting steels
- c) MnO-SiO₂-Ti₂O₃-TiO₂-Al₂O₃: high strength steels
- d) Al₂O₃-Ti₂O₃-TiO₂: interstitial-free (IF) steels
- e) Ti-Nb-C-N: high-strength low-alloy (HSLA) steels containing Ti and Nb

4) Refractories

- a) MgO-C: BOF and RH vessel refractories, ladle slag line
- b) MgO-Al₂O₃: ladle castable
- c) MgO-Cr₂O₃-FeO-Fe₂O₃-Al₂O₃: VOD and AOD refractories
- d) Al₂O₃-ZrO₂-SiO₂-C: nozzle refractories and tundish plugs

Most common phase diagrams for steelmaking applications

 $\begin{array}{c} \text{CaO-MgO-SiO}_2\text{-}\text{Al}_2\text{O}_3\text{-}\text{FeO-Fe}_2\text{O}_3\text{-}\text{MnO}\\ \text{Na}_2\text{O-CaO-Al}_2\text{O}_3\text{-}\text{SiO}_2\\ \text{MnO-Ti}_2\text{O}_3\text{-}\text{TiO}_2 \end{array}$

GactSage[™]

GactSage[™]

Database Selection for Ferrous Applications 15

JactSage[™]

GactSage[™]

Fig. 5. Calculated isothermal section in the MnO–"TiO₂"–"Ti₂O₃" system at 1400 °C. Thin lines represent sections of phase equilibria under specified oxygen partial pressures (log pO_2 (bar)). Dashed lines denote sections of phase equilibria under $pCO/pCO_2 = 1$, 9 and C/CO equilibrium, respectively.

FactSage[™]

Na₂O-containing system: Na₂O-SiO₂-CaO-Al₂O₃

Database Selection for Ferrous Applications 24

Important phases and phase diagrams: Na₂O-Al₂O₃-SiO₂ system

GactSage™

Important phases and phase diagrams: Na₂O-Al₂O₃-SiO₂ system

Database Selection for Ferrous Applications 26

CRO

Important phases and phase diagrams: Na₂O-CaO-SiO₂ system

GactSage[™]

Database Selection for Ferrous Applications 28

CRO

Important phases and phase diagrams: Na₂O-Al₂O₃-SiO₂-CaO system

Database Selection for Ferrous Applications 29

Important phases and phase diagrams: Na₂O-Al₂O₃-SiO₂-CaO system

GactSage[™]

Database Selection for Ferrous Applications 30

Important phases and phase diagrams: Na₂O-Al₂O₃-SiO₂-CaO system

Database Selection for Ferrous Applications 31

Important phases and phase diagrams: Na₂O-Al₂O₃-SiO₂-CaO system

Database Selection for Ferrous Applications 32

CRO

Important phases and phase diagrams: alkali-silicate system

Important phases and phase diagrams: K₂O-Al₂O₃-SiO₂ system

Database Selection for Ferrous Applications 34

CRCT

FactSage[™]

Important phases and phase diagrams: Li₂O-Al₂O₃-SiO₂ system

Database Selection for Ferrous Applications 35

Important phases and phase diagrams: Na₂O-K₂O-Al₂O₃-SiO₂-CaO-MgO

Quasichemical Model for Short-Range Ordering

Used for the liquid oxide solution

 $SiO_2 - CaO - MgO - AIO_{1.5} - FeO - FeO_{1.5} - \dots$

- Consider a random distribution of second-nearest-neighbor cation pairs.
- Model parameters are the Gibbs energies of the pair-exchange reactions such as:

 $[Ca-Ca]_{pair} + [Si-Si]_{pair} = 2 [Ca-Si]_{pair}$ $\Delta g_{CaSi} < 0$ This is equivalent to $O^{2-} + O^{\circ} = 2O^{-}$

$$G = \left(n_{SiO_2}G^0_{SiO_2} + n_{CaO}G^0_{CaO} + \cdots\right)$$
$$-T\Delta S^{config} + \sum_{n>m}n_{mn}\left(\Delta g_{mn}/2\right)$$

where : n_i , G_i^0 = number of moles and Gibbs energy of component i in solution

 $\begin{array}{ll} n_{mn} & = \text{number of moles of [m-n] pairs at equilibrium} \\ \Delta S^{\text{config}} & = (\text{Ising}) \text{ entropy for random distribution of pairs} = \text{function of } n_{i} \text{ and } n_{mn} \\ \Delta g_{mn} & = \text{binary model parameters} \\ & \text{(which may be functions of composition and T)} \end{array}$

(The equilibrium values of n_{mn} are obtained by setting $\partial G/\partial n_{mn} = 0$ at constant n_i)

High Temperature Thermochemistry Laboratory

McGill

Silicate Slag: Network structure

-Consideration of Second Nearest Neighbor Short-Range-Ordering-

$$O^0 + O^{2-} = 2 O^{-}$$

High Temperature Thermochemistry Laboratory

McGill

Q-species and charge compensation effect 39

[Le CNRS Jan2014: http://www.insu.cnrs.fr/images/9757]

Calculated Q-species amount in K₂O-SiO₂ melt 40

The N_2O -Si O_2 -A I_2O_3 system (N = Na, K, Li,...) 41

In the Model (MQM)

- Associate NAI⁴⁺ was introduced
- Replacement of Si⁴⁺ by Al³⁺ in quasi-lattice sites is assisted by N⁺.

<u>Closely reproduce the nature of the</u> <u>aluminosilicate melt</u>

Charge compensation effect: $AI^{3+} + N^+ = NAI^{4+}$ replacing Si⁴⁺ in silicate melts

Application of Structural information from MQC model

St McGil

High Temperature Thermochemistry Laboratory

Slag Viscosity: Structural Viscosity Model

Modified Quasichemical Model

→Bond fraction (Silicate network structure)

- →Activation energy of bond breaking reaction: Binary parameters + Association energy for M⁺Al³⁺ replacing Si⁴⁺ in silicate network
- →Prediction of multicomponent systems (oxide and oxyfluoride)
- →Heterogeneous (solid + liquid): Einstein-Rosco equation

Database for molten slag CaO-MgO-SiO₂-Al₂O₃-FeO-Fe₂O₃-MnO-TiO-TiO₂-Na₂O-K₂O-Li₂O-B₂O₃-F (-PbO-NiO)

Database for glass (supercooled melt) CaO-MgO-SiO₂-Al₂O₃-Na₂O-K₂O-B₂O₃-PbO-...

The Na₂O-Al₂O₃-SiO₂ system

GactSage[™]

Database Selection for Ferrous Applications 44

The Na₂O-Al₂O₃-SiO₂ system

GactSage[™]

Database Selection for Ferrous Applications 45

Viscosity of CaO-Al₂O₃-SiO₂-R₂O (R=K, Na, Li)

Database Selection for Ferrous Applications 46

Viscosities of various systems

Database Selection for Ferrous Applications 47