Advanced features of Equilib

The *Equilib* module has many advanced features which are described here.

Table of Contents

Section 1	Table of Contents
Section 2	Target Phases [F],[P],[S]
Section 2.1	[F] - Formation target (CaO-SiO ₂)
Section 2.2	[P] - Precipitate target (CaO-SiO ₂ and (CaO-SiO ₂ -Al ₂ O ₃)
Section 2.3	[C] - Composition target (deoxidation of Fe-AlO)
Section 3	Phase transitions: CaO-SiO2 immiscibility (FACT-SLAG)
Section 4	Solution properties <1-A>NaCl + <a>KCl
Section 5	Include dilute solutions:
Section 5.1	<u>Cr in Cu-Fe alloy</u>
Section 5.2	<u>TI₂O+HfO₂ in Slag</u>
Section 6	Limitations and restrictions on the use of dilute components
Section 7	<u>Pseudonyms</u>
Section 8	Include molar volumes

(continued)

Advanced features of Equilib - Table of Contents (continued)

Section 9	Open versus closed system
Section 9.1	Desulphurisation of Cu ₂ S by air
Section 9.2	Deleading of Cu-1%wtPb by argon refining
Section 10	Parameters Menu
Section 10.1	<u>Dimensions</u>
Section 10.2	Target limits and Stop/Kill
Section 10.3	Predominant species
Section 10.4	Dilute extrapolation, Cut-off, Output mass units
Section 11	Reactants Window Options
Section 11.1	Combining reactants into one composite chemical species
Section 11.2	Arbitrary chemical formula (permitting missing species)
Section 11.3	Mixing mass units - moles, grams, lbs
Section 11.4	Importing a stream/mixture
Section 11.5	Reaction table
Section 12	Data Search:

gas ions, aqueous species, limited data, CxHy Databases

(continued)

Advanced features of Equilib - Table of Contents (continued)

Section 13	Cooling calculations
	Equilibrium cooling, Scheil-Gulliver cooling with or without
	back diffusion, full annealing of cast alloys
Section 14	Paraequilibrium and minimum Gibbs energy calculations
Section 15	Using Virtual Elements to Impose Constraints
Section 16	Select and define the composition of an industrial grade alloy

A species or solution phase may be declared as a Target phase. There are several types of target phases:

- [F] Formation target phase: the T (P or <A>) is calculated when the species or phase first begins to form. The final T (P, <A>) must not be specified (blank column) and an estimate of the unspecified T (P, <A>) must be entered.
- [P] Precipitate target phase: the T (P or <A>) is calculated when another species or phase first starts to precipitate from this phase. The precipitate target phase must be a solution (for example FACT-SLAG or gas phase). The final T (P, <A>) must not be specified (blank column) and an estimate of the unspecified T (P, <A>) must be entered.
- [C] Composition target phase: the <A> is calculated for a given solution composition. The final T and P must also be specified and final <A> must not be specified (blank column).

Formation target phase

The program calculates when this phase first forms (activity = 1, and generally zero mass). One of T, P or alpha must not be specified (i.e. blank) so that *Equilib* can calculate the limiting T (P or alpha) when the **formation target** phase first forms. The formation target phase may be a compound species (for example a pure solid or liquid) or a solution phase (gas phase or real solution such as FACT-SLAG).

Setting a FACT-SLAG formation target at a given composition

3° The Formation Target frame is enabled. Enter an estimate for the value of T(C). Here T(C)= 1000°C.

The program will calculate that temperature when FACT-SLAG first starts to form (**0 mole**).

JactSage[™]

1° **Right-click** on the + column to open the **FACT-SLAG** extended menu and **select F** - **formation target phase**.

2° Enter a value of <A> (0.35) and leave a blank for the value of T(C) in the input boxes of the Final Conditions frame. This activates the Formation Target frame.

F Menu - Equilib: Formation tar	jet phase (option F) in the Lau-SiUZ binary system.	
File Units Parameters Help		
🗅 😅 🖬	T(C) P(atm) Energy(J) Mass(mol) Vol(litre)	
Beactants (2)		
	<1-A> CaO + <a> SiO2	
- Products		
Compound species	C Solution species	Custom Solutions
🔲 🔲 gas 💿 ideal 🔿 real 🛛 0	* 🛧 Base-Phase 🛛 Full Name	0 fixed activities
aqueous 0	IF FACT-SLAG Slag-liquid	O ideal solutions
pure liquids 0		U activity coerricients
★ pure solids 17		Details
suppress duplicates apply		- Pseudonyms
* - custom selection		apply 🔲 List
species: 17		
Formation Target		🔲 include molar volumes
FACT-SLAG	Legend Show 💿 all 🔘 selected	Total Species (max 700) 21
Estimate T(C): 1000	F - formation target	Total Solutions (max 30) 2
Mass(mol): 0	solutions: 2 Select	Default
Final Conditions		Equilibrium
<a> 	T(C) P(atm) Product H(J)	normal C transitions
0.35	1	O predominant O open
steps 🗖 Table	1 calculation	Calculate >>
FactSage		

Equilib Advanced 2.1.1

www.factsage.com

Calculation of the FACT-SLAG formation target at a given composition

FactSage[™]

Formation Target phase: specifying the target phase mass

Setting a FACT-SLAG formation target at a given temperature

Equilib Advanced 2.1.4

JactSage[™]

www.factsage.com

Calculation of the FACT-SLAG formation target at a given temperature (1800°C)

Precipitate target

The program calculates when a second phase first starts to precipitate (activity = 1, zero mass) from this target solution phase (activity = 1, 100% mass). One of T, P or alpha must not be specified (i.e. blank) so that *Equilib* can calculate the limiting T (P or alpha) when the second phase precipitates.

The precipitate target phase must be a solution phase for example gas or FACT-SLAG.

Setting a FACT-SLAG precipitate target at a given composition

Solution FACT-SLAG - clear - all species * - custom select species m - merge dilute solution from - solution properties	1° Right extend 2° Enter	-click on the + co ded menu and sel a value of <a> (0	lumn to open the FACT-S lect P –precipitate target .35) and leave T(C) blank	LAG phase.
 soldalin properties + - single phase I - possible 2-phase immiscibility J - possible 3-phase immiscibility - standard stable phase ! - dormant (metastable) phase F - formation target phase 		F Menu - Equilib File Units Parameters Help D 2 III	T(C) P(atm) Energy(J) Mass(mol) Vol(litre) < <u> <1-A> CaO + <a> SiO2</u>	
 P - precipitate target phase Scheil cooling target phase D - soliDification calculation C - composition target Help 		Products Compound species gas ⓒ ideal ◯ real 0 aqueous 0 pure liquids 0 ★ pure solids 17 w suppress duplicates apply	Solution species	Custom Solutions 0 fixed activities 0 ideal solutions 0 activity coefficients Details
3° The Precipitate frame is enable an estimate of th of T(C).	Target d. Enter ne value →	* - custom selection species: 17 Precipitate Target FACT-SLAG E stimate T(C): 1000 Mass(mol): 0	Legend I - immiscible P - precipitate target Select solutions: 2	apply List include molar volumes <u>Total Species (max 700)</u> 21 <u>Total Solutions (max 30)</u> 2 Default
		Final Conditions	T(C) P(atm) Product H(J) 1 1 1 calculation	Equilibrium onormal C transitions open Calculate >>

Equilib Advanced 2.2.1

www.factsage.com

11.

Calculation of the FACT-SLAG precipitate target at a given composition

Equilib Advanced 2.2.3

JactSage[™]

www.factsage.com

Calculation of a FACT-SLAG precipitate target at a given temperature

Precipitate target phase calculation for a more complex system

This is an example of a Slag-liquid precipitate target phase calculation in the CaO-SiO₂-Al₂O₃ ternary system.

In a precipitate target phase calculation, the temperature (or composition) is calculated when a second phase first starts to form (activity = 1, and zero mole) from the **«precipitate target phase»**. The **«precipitate target phase»** must be a solution for example, gas, FACT-SLAG, etc. (this differs from the **«formation target phase»** that can be any type of phase). **System SiO₂ - CaO - Al₂O₃**

In this example that temperature is calculated when the first solid precipitate starts to deposit when Slag-liquid (FACT-SLAG) is cooled. Such a calculation is extremely important for example in the pyrometallurgy and glass industries. In principle one could select the equilibrium **«transitions»** option and execute a normal calculation, but this may lead to lot of unwanted output, especially if the system is complex.

Red rimmed dot: for the 1st example **Teal** line for = 25% (2nd example)

Setting a ternary system in the *Equilib* Reactants Window In the Reactants Window the reactants are <1-A-B> CaO + <A> SiO_2 + Al_2O_3 . This defines a CaO-SiO₂-Al₂O₃ ternary system if <A> + is in the range 0 to 1. The use of unit mass (g or lb) will give the compositions in weight %.

Reactants - e Edit Table	Equilib : Units Dat	ta Search Help				_ I X
D 🗃 🕂		T(C) P(atm)	Energy(J) Mass(mol)	Vol(litre)		M 🖳 🖻 🚿
1-3						
M	ass(mol)	Species	Phase	T(C)	P(total)**	Stream# Data
<1-A-B>		CaO		_		1
* <a>		Si02		_		1
+ 		AI203		v		1
					🗖 Ir	nitial Conditions
			Next >>			
actSage	Compound:	1/28 databases Soluti	on: 1/24 database	s		1.

All

Setting the FACT-SLAG precipitate target at a given composition

Equilib Advanced 2.2.7

JactSage[™]

www.factsage.com

Precipitate target Results

Performing a composition Precipitate Target calculation

As in the previous example on **Formation Target** calculations, it is possible to perform a composition **Precipitate Target** calculation on **<A> (constant remains**

For example, if in the **Menu Window** the composition **<A>** is now unspecified (**blank**), **** is still **25%** and now the temperature is set to **1600°C**, an estimate of **<A>** is **50%**.

Composition Precipitate Target calculation: **Results**

Equilib Advanced 2.2.10

JactSage[™]

Composition Precipitate Target calculation: setting another estimate

Compostion target phase

TTD

Transitions in the CaO-SiO₂ binary phase diagram

Liquid phase immiscibility – for example X_{SiO_2} = 0.7783 and 0.9707 at 1800°C.

CaO - SiO₂

Equilib Advanced 3.1

www.factsage.com

Isothermal phase transitions in the CaO-SiO₂ binary system

The program will calculate the equilibrium at $1800^{\circ}C$ for mole fractions of SiO₂ varying from 0.7 to 1 in increments of 0.05 and will search for all phase transitions.

GactSage™

Step 2°: Products Selection – compound species

Equilib Advanced 3.3

www.factsage.com

Step 2°: Products Selection – solution species

[I] - 2-phase Immiscibility: the solution phase may be immiscible. Use this option for FACT-SLAG when SiO₂ > 50%. If the phase is not immiscible the results of the calculation will be OK - the phase will appear twice with the same composition.
 Note: This option tends to slow down the speed of the calculation - you may wish to try I! (immiscible and dormant) to check if the phase is stable.

Compositions at the two ends of the 1800°C tie-line

GactSage™

Equilib Advanced 3.5

www.factsage.com

One-phase and two-phase stability at 1800°C

In such systems, if option **«I**» is not selected, the results may be in error even when the second liquid (Slag-liquid#2) is not stable (as in the above example).

Constant composition in the CaO-SiO₂ binary system

The program will calculate all phase transitions at $X_{SiO_2} = 0.35$ in the temperature range 600 to 2600°C.

Transition Temperatures for X_{SiO2} = 0.35 in CaO-SiO2

In the **Results** Window, *Equilib* reports all phase transitions at <A> = 0.35 within the temperature range 600 to 2600°C. Most transitions report both compositions on each side of the tie-line. Such information is important in complex systems.

Solution Properties: FACT-Salt in the NaCI-KCI binary system

JactSage[™]

Solution Properties: opening the window

1° **Right-click** on the + column to open the **FACT-Salt** extended menu and **select solution properties...**

This option lists the common partial and integral solution properties for the phase. The option is **only active** if the equilibrium has been calculated and the solution phase is stable.

Solution Properties Window and menus

Solution Properties: Changing Standard States

In the solution properties window menu, select Standard States > Change Standard States... and click in the + column to select the new standard state.

	Species	+	Data	Standard State	Code
_	NaCl	+	FACT	FACT-SALT	19
Standard States			FACT	NaCl(g)	5
Current Standard States N			FACT	NaCl(liq)	12
Charles Charlend States			FACT	NaCl(s)	16
Change Standard States					
	KCI	+	FACT	FACT-SALT	20
			FACT	KCl(g)	9
			FACT	KCl(lig)	14
			FACT	KCI(s)	18

Solution Properties: Molar Partial Properties Spreadsheet

 Edit	
Сору	Ctrl+C
Find	Ctrl+F
Find Next	F3

🖡 Molar Partial Propeties FACT-SALT - Salt-liquid - Energy(J), (mol)												
	File Edit Swap rows and columns											
	Component i	Page	<alpha></alpha>	T(C)	P(atm)	X(NaCl)	X(KCI)	a(i)	gamma(i)	Delta_g(i)		
		1	0	850	1	1.0000	0.00000	1.0000	1.0000	0.00000		
Taut Canadahaah		2	0.1	850	1	0.90000	0.10000	0.89757	0.99730	-1009.1		
Text Spreadsheet		3	0.2	850	1	0.80000	0.20000	0.79165	0.98956	-2181.8		
Excel Spreedsheet		4	0.3	850	1	0.70000	0.30000	0.68413	0.97733	-3545.0		
		5	0.4	850	1	0.60000	0.40000	0.57666	0.96110	-5140.8		
	NaCI_SALT	6	0.5	850	1	0.50000	0.50000	0.47067	0.94133	-7037.5		
		7	0.6	850	1	0.40000	0.60000	0.36736	0.91839	-9351.7		
		8	0.7	850	1	0.30000	0.70000	0.26777	0.89257	-12305.		
		9	0.8	850	1	0.20000	0.80000	0.17282	0.86408	-16394.		
		10	0.9	850	1	0.10000	0.90000	8.33104E-02	0.83310	-23208.		
		11	1	850	1	0.00000	1.0000	1.00000E-75	<-not-calctd>	<-not-caletd>		
	Component i	Page	<alpha></alpha>	T(C)	P(atm)	X(NaCl)	X(KCI)	a(i)	gamma(i)	Delta_g(i)		
		1	0	850	1	1.0000	0.00000	1.00000E-75	<-not-calctd>	<-not-calctd>		
		2	0.1	850	1	0.90000	0.10000	8.24309E-02	0.82431	-23307.		
		3	0.2	850	1	0.80000	0.20000	0.17232	0.86162	-16421.		
		4	0.3	850	1	0.70000	0.30000	0.26834	0.89445	-12285.		
		5	0.4	850	1	0.60000	0.40000	0.36910	0.92274	-9307.6		
	KCI_SALT	6	0.5	850	1	0.50000	0.50000	0.47325	0.94651	-6986.3		
		7	0.6	850	1	0.40000	0.60000	0.57949	0.96582	-5095.1		
		8	0.7	850	1	0.30000	0.70000	0.68654	0.98078	-3512.0		
		9	0.8	850	1	0.20000	0.80000	0.79316	0.99145	-2164.0		
		10	0.9	850	1	0.10000	0.90000	0.89807	0.99786	-1004.0		
		11	1	850	1	0.00000	1.0000	1.0000	1.0000	0.00000		
	•									•		

File

Save As

Print Setup ... Print Font ...

Print

Close
Solution Properties: Molar Integral Properties Spreadsheet

	F Molar Integral Propeties FACT-SALT - Salt-liquid - Energy(J), (mol) File Edit Swap rows and columns							<u> </u>			
	Page	<alpha></alpha>	T(C)	P(atm)	X(NaCl)	X(KCI)	g	h	\$	Delta_g	Delta_h
	1	0	850	1	1.0000	0.00000	-5.29522E+05	-3.35216E+05	173.00	0.00000	-5.10481E-08
	2	0.1	850	1	0.90000	0.10000	-5.36600E+05	-3.38009E+05	176.82	-3238.9	-203.82
	3	0.2	850	1	0.80000	0.20000	-5.42231E+05	-3.40753E+05	179.39	-5029.5	-358.69
	4	0.3	850	1	0.70000	0.30000	-5.47208E+05	-3.43450E+05	181.42	-6166.9	-465.99
Clear	5	0.4	850	1	0.60000	0.40000	-5.51688E+05	-3.46100E+05	183.05	-6807.5	-527.22
	6	0.5	850	1	0.50000	0.50000	-5.55731E+05	-3.48706E+05	184.33	-7011.9	-543.84
	7	0.6	850	1	0.40000	0.60000	-5.59357E+05	-3.51268E+05	185.27	-6797.7	-517.23
	8	0.7	850	1	0.30000	0.70000	-5.62548E+05	-3.53789E+05	185.87	-6149.8	-448.58
	9	0.8	850	1	0.20000	0.80000	-5.65248E+05	-3.56268E+05	186.07	-5010.0	-338.93
	10	0.9	850	1	0.10000	0.90000	-5.67302E+05	-3.58708E+05	185.72	-3224.3	-189.16
	11	1	850	1	0.00000	1.0000	-5.67917E+05	-3.61108E+05	184.13	0.00000	-2.72004E-07
	•		1								Þ

Select All

Equilib Advanced 4.6

Include dilute solution: Cr in Cu-Fe alloy

The **FACT-CuLQ solution** (Cu(liq) alloy) does not contain **Cr**. This example shows **how to create** a **dilute Henrian solution** of **Cr** and then **merge it** into the **FACT-CuLQ solution phase**.

	F Reactants - Equilib File Edit Table Units Data Search Help	_ 🗆 X
	T(C) P(atm) Energy(J) Mass(mol) Vol(litre)	III 🖵 🖻 😿
	1-3 Mass(mol) Species Phase T(C) P(total)** 1 Cu + 0.05 Fe + 0.10 Cr	Stream# Data
I Cu + 0.05 Fe + 0.10 Cr hat is, Cu may be consid and Fe and Cr as solutes	ered as a <mark>solvent</mark> S.	
		Initial Conditions
	Next >>	
	FactSage Compound: 1/28 databases Solution: 1/24 databases	11.

Include dilute solution: Cr in Cu-Fe alloy – Possible products

Solution Phase FACT-CuLQ -Possible products at 1200°C and 1 atm: Cu-lig or speiss (presence of Cu not essential). <50 mol% As, <15 mol% S, 300-1300 C; <10 mol% O (good around 1250 C). Compound species: pure liquids, pure solids FACT-CuLQ:-15 Cu. 16 Fe Solution species: FACT-CuLQ _ 🗆 🗵 F Menu - Equilib Short description of the File Units Parameters Help 👖 🖳 🕒 🐲 🚔 日 T(C) P(atm) Energy(J) Mass(mol) Vol(litre) D **FACT-CuLQ** Solution Reactants (3) Phase. It does not 0.05 Fe + 0.1 Cr Cu + contain Cr. Products Solution species Custom Solutions Compound species gas 💿 ideal 🔿 real 0 0 fixed activities **Base-Phase** Full Name **Right-click** to open 0 ideal solutions. 0 FACT-FeLQ Fe-lia 0 activity coefficients 3 + pure liquids FACT-CuLQ + Cu-lig the pure liquids 두 pyre solids FACT-FeCu fccFe-Cu **Species Window** suppress duplicates apply Pseudonyms: apply 🗌 List ... species: 7 include molar volumes Target - none -Legend Show 💿 all Total Species (max 700) Selected + - selected Estimate T(K): 1000 Total Solutions (max 30) species: Select Mass(mol): 0 solutions: Default Final Conditions Equilibrium T(C)Product H(J) Inormal P(atm) C transitions predominant C open 1200 Calculate >> Table steps 1 calculation FactSage

GactSage™

Equilib Advanced 5.1.1

www.factsage.com

Creating an ideal Henrian solution of Cr(liq)

Equilib Advanced 5.1.2

JactSage[™]

Merging the ideal solution diluteCr and FACT-CuLQ

Calculation including a dilute solution: Cr in Cu-Fe alloy

Solution Phase FACT-CuLQ - Cu-liq or speiss (presence of <50 mol% As, <15 mol% S, 30 FACT-CuLQ:- 15 Cu, 16 Fe, + Ideal Solution #1 - diluteCr:- 5 Cr(liq)	[:] Cu not essential). 10-1300 C; <10 mol% 0 (good around 1250 C).	Recalling that the of Cr(liq) in Cu(liq $\log_{10} [\gamma_{Cr(liq)}] = 59$ We have, at 1200	e Henrian activity coefficient g) is: 983.29/T(K) - 2.9522 0°C (1473.15 K), γ _{Cr(liq)} = 12.86
<mark>F</mark> Menu - Equilib: Merging a	dilute Henrian solute (option m) into an existing	real solution - Cr in FAC 💶 🗙	Custom Solutions
File Units Parameters Help	T(C) P(atm) Energy(J) Mass(mol) Vol(litre)	III 💷 🕞 😿	Fixed Activity: 0 Species Ideal Solution:
Products	Cu + 0.05 Fe + 0.10 Cr		#1 diluteCr:- 5: Cr(liq): log10(gamma) = (5983.29/TK -2.9522) OK
Compound species gas () ideal () real aqueous pure liquids pure solids suppress duplicates ap species: Target - none -	Solution species * • • 0 FACT-FeLQ Fe-liq 3 #1 • FACT-CuLQ 4 FACT-FeCu fccFe-Cu	Custom Solutions 0 fixed activities 1 ideal solutions 1 activity coefficients Details Pseudonyms apply List include molar volumes Total Species (max 700) 9	The dilute solute (Cr) is merged into the existing FACT-CuLQ solution.
Estimate T(K): 1000 Mass(mol): 0	# - dilute components species: 2 solutions: 1	lect Default	
Final Conditions	T(C) P(atm) ▼ Product H(J) 1200 1 1 1 1	Equilibrium Orransitions predominant Oopen Calculate >>	Lets calculate the equilibrium and retrieve the calculated value of $\gamma_{Cr(liq)}$ at 1200°C

Cr in Cu-Fe alloy – Results

Include dilute solution: Tl₂O and HfO₂ in FACT-Slag

The **FACT-SLAG** (Slag-liquid) solution does not contain the components TI_2O and HfO_2 . This example shows how to merge TI_2O and HfO_2 solutes into a **FACT-SLAG** containing SiO₂-CaO-Al₂O₃ taking into account the **«New mixing particles»** since HfO_2 dissolves as Hf^{4+} and 2 O^{2^-} , and TI_2O dissolves as 2 TI^+ and O^{2^-} .

We wish to create a liquid slag solution which is an equimolar mixture of SiO_2 -CaO-Al₂O₃ containing small amounts of Tl_2O and HfO_2 .

It is assumed that the activity coefficients (defined as $\gamma = a/X$ where a = activity and X = mole fraction) of the **dilute** constituents are independent of composition. That is, the dilute components obey **Henry's Law**. Also, for demonstration purposes let us assume that the activity coefficient of HfO₂ at 1000°C in the equimolar mixture is approximately: $\gamma_{HfO_2} = 9.0$ with respect to its pure solid standard state.

Finally, suppose that there is no information on the activity coefficient of TI_2O and so ideal solution behavior ($\gamma = 1$) is assumed for this component. In this case it is necessary to take into account the fact that a liquid slag is an ionic mixture and that TI_2O dissociates in solution to form two independent TI ions. That is, the formula (TI_2O) really represents two moles of TI ions dissolved in the slag. That is, it is actually the component $TIO_{0.5}$ which follows ideal solution behaviour.

TI₂O and HfO₂ in FACT-Slag – *Reactants*

The reactants are: 0.3333 CaO + 0.3333 SiO₂ + 0.3333 Al₂O₃ + 0.01 Tl₂O + 0.05 HfO₂ F Reactants - Equilib Edit Table Units Data Search Help 111 📑 🕒 😿 T(C) P(atm) Energy(J) Mass(mol) Vol(litre) + 1-5 Mass(mol) Species Phase P(total)** Stream# Data The system is an 0.3333 CaO equimolar mixture of • 0.3333 SiO2 0.3333 CaO, SiO₂ and Al₂O₃... AI203 • 0.01 TI20 0.05 HfO2 Initial Conditions Next >> Compound: 1/28 databases Solution: 1/24 databases FactSage ...with TI_2O and HfO_2 added as **dilute components**.

Equilib Advanced 5.2.1

www.factsage.com

TI₂O and HfO₂ in FACT-Slag – Possible products

Creating an ideal Henrian solution of HfO₂(s)

1° Right-click to open the HfO₂(s2) extended menu

Creating an ideal Henrian solution of HfO₂(s) – setting y

Notes:

- 1. In general, if γ is known at only one temperature, it is better to assume that RT log γ = constant than to assume that log γ = constant.
- 2. In this example note that γ is the activity coefficient relative to SOLID HfO₂(s2) as standard state.

Adding Tl₂O(I) to the ideal solution

F T(C) = 200 Image: Constraint of the second s	 # denotes species also used in ideal solution 1 and h indicates an henrian activity coefficient 7° Press OK to return in the Menu Window
Select All Select Clear OK File	Menu - Equilib Image: Second seco
8° Right-click to open the pure liquids Species Window	roducts Solution species ← gas ● ideal ● real 18 Solution species ← gas ● ideal ● real 18 Solution species ← pure liquids O fixed activities ← pure liquids O fixed activities ← suppress duplicates Pseudonyms * - custom selection List
	Species: 19 Target - none - Estimate T(K): 1000 Mass(mol): 0 Legend - selected species: 3 Solutions: 1 Image: Construction of the selected of the selec
Fac	inal Conditions Equilibrium <a> T(C) P(atm) Product H(J) normal transitions predominant C open Calculate >> Calculate >> xtSage 5.2

Adding $Tl_2O(I)$ to the ideal solution – setting γ

GactSage™

Equilib Advanced 5.2.6

www.factsage.com

A dilute solute in an ideal solution may have a Henrian activity coefficient, γ , where:

$$\log_{10} \gamma = \mathbf{A}/\mathsf{TK} + \mathbf{B}$$

You specify **A** and **B**, and the number of new mixing particles **P**. Examples:

- Solute Sn(s) dissolving in Pb(s) :
 P = 1 since Sn is a new particle.
- Solute NaF(liq) dissolving in LiCl(liq) (i.e. Li⁺ and Cl⁻):
 P = 2 since NaF dissolves as new mixing particles Na⁺ and F⁻.
- Solute NaCl(liq) dissolving in LiCl(liq) (i.e. Li⁺ and Cl⁻):
 P = 1 since NaCl dissolves as Na⁺ and Cl⁻ but only Na⁺ is a new particle.
- Solute S₂(liq) dissolving in Fe(liq) as S: P = 2.

In the present example P = 2 because TI_2O dissociates in the slag as:

$$TI_2O \rightarrow 2 TI^+ + O^{2-}$$

Merging the ideal Henrian solution DilOxide and FACT-Slag

Calculation including a dilute solution: Tl₂O and HfO₂ in CaO-SiO₂-Al₂O₃ slag

TI₂O and HfO₂ in CaO-SiO₂-AI₂O₃ slag: Results (FACT format)

F Results 0.047174	- 0.035632
$\square = \frac{1}{0.31446 + 0.31446 + (2 \times 0.31446) + (2 \times 0.3146) $	$2 \times 0.0094349) + 0.047174$
0.3333 Ca0 + 0.3333 Si02 + 0.3333 A1203 + 0.01 T120 +	
0.005 Hf02 = 0.00000 mol (0.19880E-03 Tl) (1000.00 C, 1 atm, gas_ideal, a=0.24851E-03) + 1.0599 mol (0.31446 Si02 + 0.31446 Ca0 + 0.31446 Al203 + 0.94349E-02 Tl20_Dil0xide + 0.47174E-01 Hf02(s2)_Dil0xide (1000.00 C, 1 atm, Slag-liquid+Dil0xide) + 0.00000 mol Hf02 (1000.00 C, 1 atm, S2, a=0.32070) + 0.00000 mol Tl20 T	because TI_2O dissociates into two TI ions and also AI_2O_3 dissociates into two AI ions: $AI_2O_3 \rightarrow 2 AI^{3+} + 3 O^{2-}$ Note: This information about AI_2O_3 is included in the FACT-SLAG database.
(1000.00 C, 1 atm, L1, a=0.20315E-03) The cutoff concentration has been specified to 1.000E-04 Data on 2 product species identified with "T" have been extrapolated Data on 1 product species identified with "f" have been calculated with a user-supplied activity-coefficient expression ************************************	The calculated activity of HfO ₂ (s2) is: $a_{HfO_2} = \gamma_{HfO_2} X_{HfO_2} = (9.0)(0.035632)$ = 0.32070
-1.03501E+06 -1.28273E+06 0.00000E+00 1.94572E+02 9.71063E+01	

Note:

If we increase γ_{HfO_2} , the calculated activity would increase until solid HfO₂(s) would be calculated to precipitate when its activity = 1.0. If the solubility of HfO₂ were experimentally known for instance, then we could adjust γ_{HfO_2} in this way in order to reproduce the measured solubility. That is, a measured solubility limit permits us to determine the value of the Henrian activity coefficient.

TI₂O and HfO₂ in CaO-SiO₂-AI₂O₃ slag: Results (ChemSage format)

0	Results utput Ed 🗸		(2×0.009	94349)
		0.31446 + 0.3	$31446 + (2 \times 0.31446)$	$(2 \times 0.0094349) + 0.047174 = 0.014233$
•	T = 1000.00 C P = 1.00000E+00 atm V = 0.00000E+00 dm3 STREAM CONSTITUENTS Ca0_lime(s) Si02_quartz(l)(s) Al203_gamma(s) Tl20(s) Hf02(s) PHASE: gas_ideal T1 T0TAL:	AMOUNT/mol 3.3330E-01 3.3330E-01 3.3330E-01 1.0000E-02 5.0000E-02 EQUIL AMOUNT MO mol 0.0000E+00	LE FRACTION FUGACITY atm 8.0000E-01 1.9880E-04 1.0000F400 2.4851F-04	
	PHASE: Slag-liquid SiO2 CaO Al2O3 Tl2O_DilOxide HfO2(s2)_DilOxide TOTAL: HfO2(s2) Tl2O(liq)	DilOxide mol MO 3.3330E-01 3.3330E-01 3.3330E-01 T 1.0000E-02 1.0599E+00 mol 0.0000E+00 T 0.0000E+00 COULL S FOULL	LE FRACTION ACTIVITY 3.1446E-01 8.3320E-02 3.1446E-01 9.5912E-05 3.1446E-01 ■ 1.3193E-02 9.4349E-03 2.0315E-04 4.7174E-02 3.2070E-01 1.0000E+00 1.0000E+00 ACTIVITY 3.2070E-01 2.0315E-04 C. FOULL V. FOULL	The calculated activity of $TI_2O(Iiq)$ is: $a_{TI_2O} = \gamma_{TI_2O} X_{TI_2O} = \gamma_{TI_2O} (X_{TIO_{0.5}})^2$ $= (1.0)(0.014253)^2 = 2.0315 \times 10^{-4}$
	J.R-1 J.R-1 9.71063E+01 -1.03 Mole fraction of sy gas_i T1 6.66 Hf 1.16 Ca 7.96 Si 2.04 A1 6.11	J J.R-1 3501E+06 1.94572E+02 7stem components: .deal Slag-liquid 367E-01 5.6931E-03 305E-47 1.4233E-02 396E-18 9.4876E-02 364E-15 9.4876E-02 372E-20 1.8975E-01	-1.282738+06 0.000008+00 Note: The calculated va If experimental va	por pressure of TI gas is 1.988×10^{-4} atm. apor pressure data were available, then one
	U 3.33 The cutoff limit fo Data on 2 constitue temperature range	333K-01 6.0057E-01 or phase or gas constitu ents marked with 'T' are	ent could adjust γ _{Tl2} 0 measured vapor μ ext of the Henrian ac	bressure permits one to determine the value tivity coefficient.

Equilib Advanced 5.2.11

GactSage[™]

Limitations and restrictions of merging dilute solutes into solutions

- 1. Ions are not permitted as dilute species (ex: Na^+ , $AICIO_3^-$ in 'diluteCr').
- 2. The resulting solution should be dilute in the solute(s) that are merged (ex: in the present case if the resulting solution phase is say >10% Cr then the validity of the results would be in question).
- 3. Try to avoid species that are already present in the existing database (ex: in the present case avoid adding dilute Fe(liq)).
- 4. You may create several different ideal Henrian solutions, each with one or more solutes, however:
 - a given solute can only appear in one ideal solution (ex: in the present case Cr(liq) is a solute only in 'Ideal Solution #1 - diluteCr').
 - 2. each ideal Henrian solution can be merged only once into one real solution (ex: in the present case 'diluteCr' is merged into FACT-CuLQ and no other).
 - 3. each real solution can contain no more than one merged dilute solution (ex: in the present FACT-CuLQ contains only 'diluteCr').
- Merging dilute solutions into complex solutions (ex: oxides into FACT-SLAG, salts into FACT-SALT) may require special consideration due to the number of "New mixing particles" (ex: please refer to the example on Tl₂O and HfO₂ in FACT-SLAG).
- 6. Although the calculated solution phase composition is thermodynamically selfconsistent, the results are an approximation only and only truly valid at infinite dilution.

The following two slides show how a user defined list of phase names of solution phases (pseudonyms) can be applied in order to give output tables a user-specific appearance.

NOTE that this feature is also available in the *Phase Diagram* module where the user defined phase names are used for labelling the phase fields.

Pseudonyms

This feature enables you to use your own description (that we call a '**pseudonym**') for a solution phase. For example, you could replace '?Slag-liquid' by say 'slag', or 'FCC-A1' by 'Fe(fcc)', etc.

F Menu - Equilib				
File Units Parameters Help				
	T(C) P(atm) Energy(J) Mass(mol) Vol(I)	🔣 🗗 🕅 🕅		
Beactants (2)			1º Click on t	ha Liat
			T CIICK ON I	ne List
	<1-A> NaCl + <a> KCl		button to	access the
			nagudan	
Products			pseudony	/ms menu.
Compound species	n species	Custom Solutions		
gas to real U	Base-Phase Full Name	0 fixed activities 0 ideal solutions		
agueous 0 +	- FACT-ACI AlkCl-ss	0 activity coefficients		
solid 0	FACT-SeLQ LiqAlloy	Details		_
Suppress duplicates		- Pseudonyms	Edit a current pseudonym 🕨	
Species: 0		apply 🗍 List N	Add a new pseudonym 🧳	FACT-SALT_Salt-liquid
species. 0			Help	FACT-ACI AlkCl-ss
Target	db	include molar volumes		. FACT-SELQ_LIQAIIOY
Estimate T(K): 1000 + - sele	ected Show 💿 all 🔿 selected	Total Species (max 692) 4		
Mass(mal): 0	species: 4 Clear			
	solutions: 2	Default	2º Select 'Ed	t 'or
Final Conditions		- Equilibrium		
KA> KB> T	「(C) P(atm) Product H(J) ▼	normal C transitions	Add' ar	id then click
0 1 0.25 850	1	Opredominant Oppen	on the ph	se to open
10 steps 🗖 Table	5 calculations	Calculate >>		
FactSage 5.1			the Pseud	onyms
			dialog box	

Equilib Advanced 7.1

Pseudonyms

Pseudonyms	
Enter the pseudonym for FACT-SALT_Salt-liquid	Cancel
metal hot_metal very_hot_metal	-
- avoid the following characters: $(? \otimes I)^* \cap I \cong ($	
(Click 'Çancel' to delete the pseudonym.)	
Molten_Salts	

3° Enter a **pseudonym** for the **selected phase** and press **OK**.

If the 'apply' box is checked the pseudonyms will appear in the Equilib Results Window and Phase Diagram plotted Figure.

🕞 Menu - Equilib			
File Units Parameters Help	T(C) P(atm)	Energy(J) Mass(mol) Vol(I)	🚻 📑 😽
rieactants (2)	<1.A> NaCl	<a> KCl	
Products Compound species gas © ideal © real 0 liquid 0 aqueous 0 solid 0	Solution species * Base-Phase + FACT-SALT + FACT-ACI FACT-SeLQ	Full Name Molten_Salts AlkCl-ss LiqAlloy	Custom Solutions O fixed activities O ideal solutions O activity coefficients Details
✓ suppress duplicates Species: 0 Target - none - Estimate T(K): 1000 Mass(mol): 0	Legend + - selected	Show Sall C selected species: 4 solutions: 2	Pseudonyms apply List include molar volumes <u>Total Species (max 692)</u> 4 <u>Total Solutions (max 30)</u> 2 Default

Equilib Advanced 7.2

For some stoichiometric condensed substances, e.g. SiO2 or C, molar volume data are stored in the database which permit the influence of high pressure on the phase equilibria to be calculated.

The following two slides show how the use of molar volume data is controlled from the Equilib Menu screen.

NOTE that the use of molar volume data must be executed with great care in order to avoid erroneous results.

Include molar volumes : graphite to diamond transition

Where available, **density** (i.e. molar volume) data for solids and liquids can be employed in *Equilib* (the "VdP" term) although their effect only becomes significant at high pressures. Note that (unlike *Reaction*) compressibility and expansivity data are also employed in *Equilib*.

The program will calculate the equilibrium at 1000K for pressures varying from 1×10^4 atm to 1×10^5 atm in increments of 1×10^4 atm and will search for all phase transitions.

Equilib Advanced 8.1

Graphite to diamond transition: equilibrium calculation

Equilib Advanced 8.2

Calculations with *Equilib* are usually Closed System calculations, i.e. calculations in which the amounts of all input substances are kept constant.

However, under certain conditions it is also possible to use *Equilib* for Open System calculations. In such cases it is assumed that all condensed substances/phases remain in the system while the gas phase is refresh in every calculational step.

The following slide explains the general procedure in more detail. In sections 9.1 and 9.2 two example applications are shown.

The **OPEN** Command

In many pyrometallurgical processes, for example copper converting (or steelmaking), the system is **«open»**. **Gas**, typically in the form of **air** or **oxygen**, enters the **furnace**, **reacts** with the **system**, and then **leaves** the **reactor** as **SO**₂(**g**) and **SO**₃(**g**) (or as **CO**(**g**) and **CO**₂(**g**)). These product gaseous species, being removed from the system, change the overall mass balance. An **open** process, with the gaseous products being continuously removed from the calculation, can be simulated by the *Equilibrium* command *OPEN*.

In the case of Cu_2S converting eventually all the sulfur leaves the system and then Cu_2O starts to form unless the converting is stopped.

The following figures demonstrate Cu_2S desulphurisation by air in an **OPEN** process.

The following six slides show how the Open command is applied for the stepped (open) desulphurisation of Cu_2S with air.

Note how the variable Alpha is used to define the input amount of air (.21 O_2 and .79 N_2) for use with the Open command.

Desulphurisation of Cu₂S by air: setting the Reactants Window

The reactants are one mole of Cu_2S with a variable amount <A> moles of air.

👍 Reactants -	- Equilib									- 🗆 🗙
File Edit Tabl	le Units Da	ata Search I	Help T	(C) P(atm) E	hergy(J) M	ass(mo	ol) Vol(I)		111 🖵	-
1.3										
M	lass(mol)		Species	-) - P	hase	_	T(C)	P(total)**	Stream#	Data
		Cu2S		solid-1 c	halcocite		298.15	1	1	
+ <0.21A>		02		gas		7	298.15	1	1	
+ <0.79A>		N2		gas		T	298.15	1	1	
								_		
								∏ Ir	nitial Conditio	ons
				Next >	·>					
FactSage 5.2	Compound:	ELEM E	XAM FACT	SGPS	SGSL	Solutio	n: FAC1	SGSL		//.

In an **OPEN** system, **<A>** moles of reactant are added at each step and then the gas species are removed after equilibration.

Desulphurisation of Cu₂S by air: setting the Menu Window

Possible products:

- Solution species: FACT-CuLQ, FACT-MATT
- Compound species: ideal gas, Cu₂O(s)

F T(C) = 1473.15		1		_
File Edit Show Sort				
Selected: 1/16 SOLID		F Menu - Equilib		_ 🗆 🗙
• Code Species Data Phase T V 37 N204(s) FACT solid - <t< th=""><th>Code</th><th>File Units Parameters Help</th><th>T(C) P(atm) Energy(J) Mass(mol) Vol(I) Cu2S + <0.21A> 02 + <0.79A> N2 Solution species * + Base-Phase Full Name FACT-SLAG Slag-liquid + FACT-CuLQ Cu-liq + FACT-MATT Matte Legend</th><th>Custom Solutions 0 fixed activities 0 ideal solutions 0 activity coefficients Details Pseudonyms apply List include molar volumes</th></t<>	Code	File Units Parameters Help	T(C) P(atm) Energy(J) Mass(mol) Vol(I) Cu2S + <0.21A> 02 + <0.79A> N2 Solution species * + Base-Phase Full Name FACT-SLAG Slag-liquid + FACT-CuLQ Cu-liq + FACT-MATT Matte Legend	Custom Solutions 0 fixed activities 0 ideal solutions 0 activity coefficients Details Pseudonyms apply List include molar volumes
Setting the final condition	ns for	Estimate T(K): 1000 Mass(mol): 0	+ - selected species: 5 solutions: 2 Clear	Total Species (max 692) 36 Total Solutions (max 30) 2 Default
a normal (i.e. closed system equilibrium calculation at 1200°C and 1 atm for <a< th=""><th>stem) > = 5</th><th>Final Conditions</th><th>T(C) P(atm) Product H(J) 1200 1 1 calculation</th><th>© normal © transitions predominant © open Calculate >></th></a<>	stem) > = 5	Final Conditions	T(C) P(atm) Product H(J) 1200 1 1 calculation	© normal © transitions predominant © open Calculate >>

Equilib Advanced 9.1.2

JactSage[™]

Desulphurisation: **Closed** system equilibrium calculation

GactSage[™]

Desulphurisation of Cu₂S by air: Open calculation

Setting the final conditions for an open (i.e. open system) equilibrium calculation at 1200°C and 1 atm for 50 steps of incremental <A> = 0.1

enable the s	steps' Final Condition	input box
F Menu - Equilib File Units Parameters Help	T(C) P(atm) Energy(J) Mass(mol) Vol(I)	××
Reactants (3)	Cu2S + <0.21A> 02 + <0.79A> N2	
Products Compound species + gas () ideal () real aqueous 0 pure liquids 0 * + pure solids 1 ✓ suppress duplicates * - custom selection Species: 31 Target - none - Estimate T(K): 1000 Mass(mol):	Image: selected Image: selected Image: selected Image: selected	Custom Solutions 0 fixed activities 0 ideal solutions 0 activity coefficients Details Pseudonyms apply List include molar volumes Total Species (max 692) 36 Total Solutions (max 30) 2 Default
Final Conditions <a> 0.1 50 steps Table FactSage 5.2	T(C) P(atm) Product H(J) 200 1 50 calculations	Calculate >>

1° Select open in the Equilibrium frame to

2° Enter the number of steps (here, 50) and the amount <A> (here, 0.1 mole of air) of reactant added to the system at each step at the end of which the gas phase is removed.

Desulphurisation: **Open** system equilibrium calculation

Because of its relatively high partial pressure Pb can be removed from Cu-Pb melts by way of vacuum refining.

The following six slides show how the Open command can be employed to simulate the process.

Note that «Vacuum» is established by setting a low total pressure and adding a small amount of Argon into each calculational step. The amount of argon is needed to establish a certain volume into which the lead can evaporate in each step.

Deleading of a Cu-1wt%Pb alloy by argon vacuum refining

The current example illustrates the concepts of **normal** (i.e. **closed** system) vs. **open** equilibrium calculations as applied to **argon** refining of a **Cu-1wt%Pb** alloy at reduced total pressures. It simulates deleading at 1200°C and 0.001 atm.

There are **no chemical reactions** involved in the process.

🖡 Reactants - Equilib		
File Edit Table Units Data Search Help	T(C) P(atm) Energy(J) Mass(g) Vol(I)	
1-3 Mass(g) Species Phase T(C) P(tota)** Stream# Data 99 Cu 1 Pb 1 Pb 1 Pb 1 000.00 1.0 1 1 (A) The reactants are 99 g of Cu 1 g of Pb (this defines a Cu-1 wt% Pb allov)		
with a variable amount <a> g of Ar.		
 In an OPEN system, <a> g of reactant are added at each step and then the gas species are removed after equilibration. 		
Initial Conditions		
Next >> Next >> FactSage 5.2 Compound: ELEM EXAM FACT SGPS SGSL Solution: FACT SGSL ///		

Equilib Advanced 9.2.1

www.factsage.com

Deleading of a Cu-1wt%Pb alloy: setting the Menu Window

Possible products:

- Solution species: FACT-CuLQ
- Compound species: ideal gas

	🕞 Menu - Equilib		_ 🗆 X
	File Units Parameters Help Image: Second state Image: Second state <t< th=""><th>T(C) P(atm) Energy(J) Mass(g) Vol(I) (gram) 99 Cu + Pb + <a> Ar</th><th>M 🕞 🕞 😿</th></t<>	T(C) P(atm) Energy(J) Mass(g) Vol(I) (gram) 99 Cu + Pb + <a> Ar	M 🕞 🕞 😿
Setting the final conditions for a normal (i.e. closed system) equilibrium calculation at 1200°C and 0.001 atm for <a> = 10	Products Compound species ↓ gas () ideal () real ↓ aqueous ↓ pure liquids ↓ pure solids ↓ pure solids ↓ suppress duplicates Species: 5 Target · none · Estimate T(K): 1000 Mass(g):	egend - selected - selected	Custom Solutions 0 fixed activities 0 ideal solutions 0 activity coefficients Details Pseudonyms apply List 1 include molar volumes Total Species (max 692) 7 Total Solutions (max 30) 1 Default
	Final Conditions <a> 10 120 10 steps Table	T(C) P(atm) Product H(J) ▼ 00 0.001 1 calculation	Equilibrium inormal C transitions predominant C open Calculate >>

Deleading of a Cu-1wt%Pb alloy: Closed system equilibrium calculation

Deleading of a Cu-1wt%Pb alloy: Open calculation

Setting the final conditions for an open (i.e. open system) equilibrium calculation at 1200°C and 0.001 atm for 100 steps of incremental <A> = 0.1

1° Select open in the Equilibrium frame to enable the **steps' Final Condition** input box F Menu - Equilib _ 🗆 🗵 File Units Parameters Help T(C) P(atm) Energy(J) Mass(g) Vol(I) 0 🚄 日 M 🗗 🕞 😿 Reactants (3) (gram) 99 Cu + Pb + <A> Ar Products Solution species Custom Solutions: Compound species: gas 💿 ideal 🔿 real 0 fixed activities 5 Full Name **Base-Phase** 0 ideal solutions 0 FACT-P6LQ Pb-lia aqueous 0 activity coefficients 0 pure liquids FACT-CuLQ Cu-lia + 0 pure solids suppress duplicates Pseudonyms: apply List ... Species: 5 include molar volumes Target Leaend - none -Show 🕤 all Total Species (max 692) O selected + - selected Estimate T(K): 1000 Total Solutions (max 30) species 2 Clear Mass(g): solutions: Default Equilibrium Final Conditions <A> T(C) P(atm) Product H(J) 🔘 normal predominant 🖲 open 0.001 0.1 1200 Calculate >> 100 steps 100 calculations FactSage 5.2

2° Enter the number of steps (here, 100) and the amount
 <A> (here, 0.1 g of Ar) of reactant added to the system at each step at the end of which the gas phase is removed.

Deleading of a Cu-1wt%Pb alloy: Open system equilibrium calculation

Deleading of a **Cu-1wt%Pb** alloy: **Graphical Output**

Equilib Advanced 9.2.6

www.factsage.com

In the Parameters menu the user is given information on certain overall parameter values, e.g. the dimensions of the major data arrays.

The user may also modify certain parameters which relate to output lists or which permit the interference with the execution of the calculations.

The following slide shows the Parameter screen as a whole. Further slides are used to give details on the use of the parameters.

Menu Window – Parameters menu

Help

JactSage[™]

Additional information and extended menus are available for many of the items. Point to a frame heading or input box and then click the mouse-right-button.

Parameters menu: Dimensions Frame

The following slide gives information on the Dimensions Frame. This part of the Parameters menu is strictly for information of the user. NO changes may be made.

Dimensions		
Description	Used	Max 🔺
Reactants, streams and mixtures:	5	48
Reactants per stream or mixture:		48
Species retrieved from databanks:	107	no limit
Magnetic species retrieved from databanks:	0	no limit
Species selected for products:	23	692
Components (elements + electron phases):	6	32
Number of Gibbs energy/Cp equations for a constituent:		20
Total number of Gibbs energy/Cp equations:		2200
Selected species with volume or compressibility data:		740 💌

- The dimensions table lists the current and maximum size of some commonly used variables. The maximum values are fixed during compilation and can not be modified without recompilation.
- Increasing a maximum value would increase the size of the program and reduce execution speed. Except for «Species selected for products», «Components», and «Total selected solutions», please contact us if you consider that a particular dimension is too small.

The following slides shows how Target limits may be changed and how the Stop/Kill button is activated/deactivated.

– T argel	t Limits —	
	min.	max.
T(K):	250	10000
P(bar):	1.0E-35	1.0E+08
V(I):	1.0E-08	1.0E+35
Alpha:	1.0e-5	1.0
		Default

Target Limits

- These values are the lower and upper limits of temperature, pressure, volume and alpha when these values are being calculated by Equilib. It is recommended that the default settings be used.
- Click on the «Target» frame in the Menu Window for details on how to specify a target.

– Stop/Kill	Window		
🗌 yes	refresh:	2	sec

Stop and Kill Button

- When «checked» you are able to follow the progress of the equilibrium calculation and have the option to «stop» or «kill» the calculation should the program get hung up.
- This feature is only really useful for large and lengthy calculations, or those cases where the program is unable to converge.

Parameters menu: Predominant Species Frame

The following slide shows how the Predominant Species frame is made use of.

This input controls the execution of equilibrium calculations in which the number of species to be used exceeds the maximum number of species that may be used simultaneously.

Predominant Species								
gases (50 - 300):	100							
solids + liqs (50 - 300):	100							
log file 🦷								

Predominant Species

- These are the number of predominant gaseous species (50 to 300) and pure solid and liquid species (50 to 300) that will be calculated when the Equilibrium option «Predominant» is selected.
- To improve the chances of convergence it is recommended that you use «300» in both cases. If you must reduce the number (for example because you have selected more than 100 solution species) then you should retain «300 gas» species and reduce only the number of solid and liquid species.
- The «log file» records the progress of the predominant calculation. If you get the message «- unable to calculate the standard state element(s)» it may be useful to consult this file. The log file will appear in the Results Window only if the «log file» box is checked.

Parameters menu: Dilute Extrapolation-Print Cut-off-Output Mass Units Frames

This slide shows how use is made of the Dilute Extrapolation, the Print Cut-off and the Output Mass units frames.

- Dilute Extrapolation Parameter 1.0e+6	 This value is used for extrapolating solute data outside its normal dilute concentration range stored in its solution database. The parameter is an advanced feature of the program and should not be modified from its default value (1.0e+6).
Print Cut-off Lower limit: 1.0E-70	 In the Results Window, equilibrium products below this value are not printed. This is useful in large calculations where you want to limit unwanted output for insignificant species. The value must be in the range 1.0e-70 to 0.01 The value has no effect upon the results of the calculation.
- Output Mass Units Omole Og Olb ⊙default	 Normally the input reactants and output results are both in moles and mole fractions, or grams and weight per cent. This option enables you to have input moles and output weight, or vice versa. The equilibrium results are still the same, just the method of presenting the results is changed. Note, the same effect can be obtained using the "gram" and "mole" formats in the List Window.

The following sixteen slides show how use is made of various options that can be found in the Reactants screen of the *Equilib* module.

The use of arbitrary species formulae is shown in the following slide.

Note that this option is very useful when only the input amount of the «arbitrary» species is important for the calculation. As soon as extensive property changes are to be calculated this kind of input is not permitted since the «arbitrary» species has a chemical formula but no thermodynamic properties. Thus the input cannot be used to calculate the state properties of the reactants.

Combining reactants into **one composite** chemical species

GactSage[™]

The input of mass units in the Reactants screen is not fixed to the use of the unit that was chosen as default.

It is possible to «mix» mass units, i.e. to use the default for some and specific chosen units for others of the input substances.

The following two slides show how this is achieved.

Converting reactant **mass** units (mol, g or lb)

Point the arrow in the mass input	box to view the mass	s conversion.		
Point the arrow in the	ne species input box	to view the mol	ecular weigl	nt.
F Reactants - Equilib File Edit Table Units Data Search Help T(C) P(atm) Energy(J) 1 - 3 Cu42Fe25533: 1 mol = 5123.29 g = 11.2949 lb Cu42Fe25533: Mass(mol) Species Phase 1 Cu42Fe25S33 + (A> N1.5800.42 + (B>	Mass(mol) Vol(I)	Note that available compos species	at no data a e for the site chemic s.	re al
For example you may wish to specie 1. Right-click on the matte mass in 2. Select: Convert this reactant ar	fy the matte compone nput box to open the nount to > g	ent in grams. e mass menu .		
Next >> FactSage 5.2 Compound: ELEM EXAM FACT SGPS SGSL	Solution: FACT SGSL	Cu42Fe25533: 1 mol = 5123 Convert this reactant amount to Convert ALL reactant amounts Set all reactant masses to 1	.29 g = 11.2949 lb o ▶ to ▶	mol g lb
		Help		

Mixing reactant mass units of mol g and lb

You can mix the mass units by including a 'mol', 'g' or 'lb' in the reactant amount. F Reactants - Equilib File Edit Table Units Data Search Help T(C) P(atm) Energy(J) Mass(mol) Vol(I) 2 + 📰 ப If the default mass units is mol, 1-3 the following is equivalent to Mass(mol) Species Phase T(C) the above system: 5123.285 g Cu42Fe25S33 · no data -N1.5800.42 ÷ <A> no data - SiO2 + solid-1_guartz(I) F Reactants - Equilib File Edit Table Units Data Search Help T(C) P(atm) Energy(J) Mass(mol) Vol(I) +| ==| Or if you like, you can always **explicitly** 1.3 specify the mass units for each reactant amount to make your reactants data entry Mass(mol) Species Phase T(C) Cu42Fe25S33 5123.285 g no data **independent** of the default mass units. N1.5800.42 <A> mol no data -÷ mol Si02 solid-1_guartz(I) 1000 Note: When creating a composite species (for example $Cu_{42}Fe_{25}S_{33}$ and $N_{1.58}O_{0.42}$) option *«initial conditions»* (Delta H, etc.) is **disabled** since there are no data for the species. the species is limited to 7 elements. For more than 7 elements use a mixture - refer to the Mixture module. Equilib Advanced **Jact**Sage^m 11.3 www.factsage.com In addition to entering input substances by name/formula in the Reactants screen it is also possible to enter «groups» of substances as a whole package.

Such groups can be either Mixtures or Streams. For the generation of Mixtures see the Slide Show on the Mixture Module. For the generation of Stream see below (slides 11.4.1 and 11.4.2).

The following five slides (<u>11.4.3 to 11.4.7</u>) show the details of making use of Streams and Mixture in the Equilib input.

Exporting and importing an equilibrated molten salt stream - CaCl₂-NaCl-KCl-MgCl₂

This example:

- creates and saves an equilibrated stream CaCl₂-NaCl-KCl-MgCl₂ at 750°C.
- imports the stream into a new reaction
- performs various isothermal and adiabatic heat balances using the imported stream

F Reactants - Equilib File Edit Table Units Data Search F	telp T(C) P(atm) Energy(J) Mass(g) Vol(1)		The units are P (atm) and N	T (°C), Iass (g).	
Mass(g) S 40 [CaCl2] + 40 + 5 + 10	Phase T(C) P(solid 1000.00 1000.00 solid halite (rock salt 1000.00 1000.00 solid sylvite (nacl_ro 1000.00 1000.00 solid solid 1000.00 1000.00	total)** Streamt Data) meters Help T(C)] 	P(atm) Energy(J) Mass(g) Vol()) NaCl + 5 KCl + 10 MgCl	× M _ M M
There are 4 read total mass = 95g	ctants,	Products Compound spe gas @ id aqueous pure liquid pure solids vuppress	cies eal O real 0 s 0 s 0 duplicates Species: 0 Solution species s 0 s 0 FACT-SALT FACT-ACL FACT-PRVN FACT-ACL FACT-ACL FACT-ACL FACT-ACL FACT-ACL FACT-ACL FACT-ACL FACT-ACL FACT-ACL FACT-ACL FACT-ACL FACT-ACL FACT-ACL	Se Full Name Salt-liquid AlkCl-ss AMX3-Perovskite AMX3-Perovskite Alk2MX4 Alk2MX4 MCl2-LT 2 RareEarth	Custom Solutions O fixed activities O ideal solutions O activity coefficients Details Pseudonyms apply
FactSage 5.2 Compound: ELEM EX The fi • T= • P=	ble product: FACT-S	SGSL Final Condition	FACT-SeLG Legend + - selected): 0 rs <8> T(C) Table date 04Apr03)	Q LiqAlloy ▼ Show all selected species: 4 solutions: 1 Clear P(atm) Product H(J) ▼ 1 calculation	 include molar volumes <u>Total Species (max 692)</u> 4 <u>Total Solutions (max 30)</u> 1 <u>Default</u> Equilibrium normal ○ transitions ○ predominant ○ open <u>Calculate >></u>

Saving an equilibrated stream

Importing the stream into a reaction

Edit Add a new Reactant Ctrl+R Delete reactant MgCl2 Delete all blank reactants Mixtures and Streams Import a mixture Clear Futures and stream (or mixture as a single line) Support a stream (or mixture as a single line)	Import the Mg-electrolyte stream by selecting it in the Edit Menu
Example Edit a mixture or stream Directory (C:\FACT-51\) FReactants - Equilib File Edit Table Units Data Search Help C File Edit Table Units Data Search Help T(C) P(atm) Energy(J) Mass(g) Vol(I) T File Edit Table Units Data Search Help C File Edit Table Units Data Search Help C File Edit Table Units Data Search Help T(C) P(atm) Energy(J) Mass(g) Vol(I) T File Edit Table Units Data Search Help T(C) P(total)** Stream# Data (A> MaCl2 solid Sol	There are now 2 reactants: <a> MgCl₂(s,25°C) + 95 [Mg-electrolyte] (stream,750°C) i.e. <a +="" 95=""> grams total.
 Mg-electrolyte] Mg-electrolyte] Mg-electrolyte] Weight %: 1.0000E +02 Total 4.2105E +01 NaCl 5.2632E +00 KCl 1.0526E +01 MgCl2 4.2105E +01 CaCl2 Click on the [Mg-electrolyte] dropdown box to list the stream contents 	Note: You cannot change the initial T (750°C) or P (1 atm) of the [Mg-electrolyte] stream - these values, together with selected stream thermodynamic
Initial Conditions check box is selected	stored in the stream file (mixt12.dat) and are imported into the calculation when Initial
FactSage 5.2 You can change the amount of [Mg-electrolyte] from its default value (95 g)	Conditions (∆H, etc.) is checked.

FactSage[™]

www.factsage.com

Equilibrated <0> and <5> MgCl₂ + 95g [Mg-electrolyte] stream at 750°C

In the Menu Window FACT-Salt is the only possible product. Set $\langle A \rangle = '0 5'$ (i.e. alpha = 0 and 5), T = 750°C and P = 1 atm. The Results are:

F Results - Equilib 750 C, A=0 (page 1/2)	
Dutput Edit Show Pages	
T(C) P(atm) Energy(J) Mass(g) Vol(I)	1 🖳 🖻 🐺
750 C, A=0 750 C, A=5	
<pre>(gram) <a> MgCl2 + 95 [Mg-electrolyte] = (25,1,s,#1) (750,1,stream,#2) 95.000 gram (42.105 wt.% NaCl + 5.2632 wt.% KCl + 10.526 wt.% MgCl2 + 42.105 wt.% CaCl2)</pre>	Calculated $\Delta H=4415 J$ – this is the total energy required to heat 5 g MgCl ₂ from 25 to 750°C and dissolve it into the molten salt.
Mg 0.86307E-01	Cristian Construction (Construction)
Ca 0.29616 	T(C) P(atm) Energy(J) Mass(g) Vol(I) T(C) P(atm) Energy(J) Mass(g) Vol(I)
A = 0 $A = 0$ $A =$	<pre>(gram) <a> MgCl2 + 95 [Mg-electrolyte] =</pre>
Calculated $\Delta H=0$ – imported and	Mole fraction of sublattice constituents in Salt-liquid:
equilibrated streams are the same.	Ca 0.28391
	C1 1.0000 where "A" on the reactant side is 5.000 DELTA H DELTA G DELTA V DELTA S DELTA Cp PROD V (J) (J) (1) (J/K) (J/K) (1) 4.41494E+03 7.54762E+03 0.00000E+00 8.35660E+00 1.25388E+00 0.00000E+00

Adiabatic <5> MgCl₂ (solid, 25°C) + 95 g [Mg-electrolyte] stream

Adiabatic <A> MgCl₂ (solid, 25°C)+ 95 g [Mg-electrolyte] stream at 725°C

Equilib Advanced 11.4.6

JactSage[™]

Adiabatic <100A> MgCl₂ (solid, 25°C)+ 95 g [Mg-electrolyte] stream at 725°C

In addition to the two «group input» methods outlined above it is also possible to employ Reaction Tables from which the input amounts are read.

Such Reaction Tables provide the opportunity to enter input amounts for cases in which non-linear changes of the amounts are needed. In the table each line contains for a given set of input substances the irregularly changing amounts.

In the calculations the line number (Page number) will be treated as the independent parameter in order to sort the result tables.

The Page number can also be used as an axis variable in the *Result* module.

Reaction Table

In the **Reactants Window** you specify a set of reactant amounts, for example: 1 mol CH_4 + 2 mol C_2H_6 + 3 mol O_2 :

With the **Reaction Table** you can specify many different sets of reactant amounts as well as their product temperatures and pressures - each resulting in a separate equilibrium calculation.

F Reactants -	Equilib						_ 🗆 🗙
ile Edit Table		a Search Help .	T(C) P(atm) Energy(J) N	Mass(mol) Vol(1)	<u>IN</u> 9	• *
1.3	Reaction	on Table					
M	ass(mol)	Species CH4	Phase gas-FACT	T(C)	P(total)**	Stream‡	FACT
+ 2 + 3		02	gas-FACT gas-FACT	 ✓ 1000. ✓ 1000. 	00 1.0 00 1.0	1	FACT
To op butto	oen the	e Reactio elect Tab	n Table: <mark>c</mark> le > Reac	lick o tion 1	n the l Table f	Read rom	tion
						nitial Condit	ions
			Next >>				
FactSage 5.2	Compound:	ELEM EXAM FAC	T SGPS SGSL	Solution: FA	CT SGSL		11.

Editing the Reaction Table

Each set (row in the **Reaction Table**) generates a page in the **Results Window**. There is no limit to the number of sets. The **Reaction Table** may be created and edited here, or imported via a simple text or Excel spreadsheet.

File E	ctants - Equilib lit Table - Units	Data Search Help				Table	
	3 + m	,-	T(C) P(atm) Energy(J	I) Mass(mol) Vol(I)		Reaction Table	Ctrl+T
1-3 R	eaction Table	I T(C) Final P	(atm) CH4(mole)	C2H6(mole)	02(mole)	Add New Row 4 Add Many New Row 4 Insert New Row 1	Ctrl+A Ctrl+I
2	1200	1 2	1	1 2	2 11.5	Many Duplicates of Row 1	
						Delete Row 1 Delete Rows 1 to	
						Clear Table Save Table Import Table	
						Sort Table	•
						After creating	the
FactSag	je 5.2 Compou	ind: ELEM EXAM	FACT SGPS SGSL	Solution: FACT	SGSL	press Next >:	> and

Reaction Table – Results Window

F Menu - Equilib					
File Units Parameters Help					
T(C) P(atm) Energy(J) Mass(mol) Vol(I)	M 🖳 🔁 💌				
Reactants (3)					
<pre> CH4 + C2H6 + D2 (1000C = EACT #1) (1000C = EACT #1)</pre>					
[[10000,g+Ac1,#1] [10000,g+Ac1,#1] [10000,g+Ac1,#1]]					
Compound species Costom Solution species Costom Solution species	lutions				
Image: second	ctivities				
aqueous 0 FACT-PITZ Pitzer 0 deal sol pure liquids 0 SGSLECC ECC 41 0 activity	coefficients				
F pure solids Solids	Details				
SGSL-LIQU LIQUID	ns				
Species: 43 apply	📑 Results - Equilib 🖃	3- (page 3/3)			
Target include m	Output Edit Show Pa	iges .			
-none - Legend Show I all O selected Iotal Species	si de		I(L) P(atm) Energy(J)	Mass(molj Vol(I)	11 🖳 🕒 😿
Estimate T(K): TUUU Species: 0 Total Solution	th -123-				
Mass(mol): JU solutions: 0 De	efa CH4 + 2 C2H6 -	+ 11.5 02			_
Final Conditions	m (1000.00,1,g-)	FACT,#1) (1000.00,1,g-)	FACT,#1) (1000.0)0,1,g-FACT,#1)	
A> T(C) P(atm) Delta H(J)	15.500	mol (0.51610	H20	FACT	
<pre></pre>	na	+ 0.32258 + 0.16128	CO2 02	FACT	
10 steps V Table		+ 0.43053E-04	OH	FACT	
FactSage 5.2 (Update 04Apr03)		+ 0.40456E-06	HOO	FACT	
,		+ 0.33916E-06	CO	FACT	
		+ 0.26734E-06	H2	FACT	
		+ 0.174378-06 + 0.273358-07	UHOOH	FACI	
		+ 0.12130E-08	н	FACT)	
After the Reaction Table has been		(1100.00 C,	2.0000 atm, gas_	ideal)	
created click on the Table check		+ 0.00000 :	mol H20_ice	FACT	т
created click on the lable check		(1100.00 C,	2.0000 atm, S1,	a=0.26614E-05)	
box in the Menu Window to	The cutoff con	centration has been sp	ecified to 1.000)E-10	
activate it in the coloulation	Data on 1 produ	uct species identified	with "T" have h	een extrapolated	
	********	*****	* * * * * * * * * * * * * * * * * * * *	*****	****
	DELTA H	DELTA G DELTA V	DELTA S	DELTA Cp PROD	v
	(J)	(J) (1)	(J/K)	(J/K) (1)
	-3.49234E+06 -4	4.19336E+06 -6.41581E+	**************************************	1.46724E+02 8.7326	28+02
					▼

The following three slides show how the various options in the Data Search menu are employed to select/deselect specific data entries in a database.

It is shown how the Gas Ions, Aqueous Species, Limited Data and CxHy options are made use of.

Data Search Menu: gas ions, aqueous species, limited data

Data Search	
Help	
Include gaseous ions (plasmas) Include aqueous species Include limited data compounds (25 C only) 	
✓ Limit organic species CxHy, $X(max) = 2$	
Databases	
Refresh	

Include gaseous ions (plasmas):

Gaseous ion concentrations are only significant at high temperatures and only meaningful in plasma calculations. Gaseous ions add a component (the electron) to the calculation and increase the total number of gaseous species. This increases slightly the calculation time. For most practical calculations gaseous ions have no effect and so it is safe not to include them in the data search.

Debye Shielding is automatically taken into account for plasmas in *FactSage* versions 5.5 and higher.

Include aqueous species:

Including aqueous species is only meaningful in aqueous (hydrometallurgical) calculations at or near room temperature. If your calculations are above 300°C there is no point in including the aqueous species. This option has no effect upon gaseous ions (plasmas).

• Include limited data compound (25°C/298K data only):

Some solid and liquid compound species only have limited data - typically the Gibbs energy of formation at 298.15 K but without Cp and enthalpy data. In Equilib these compounds are flagged as '25°C or 298 K only' in the List Window. Such species are automatically dropped from the calculation if the final temperature is above 25°C. In such a case the "activity" column in the List Window is blank. Since most of these species are unimportant and in most cases ignored anyway then there is little need to select this option.

Reactants window – Data Search Menu: C_xH_y, databases

Data Search
Help
Include gaseous ions (plasmas)
✓ Include aqueous species
✓ Include limited data compounds (25 ⊂ only)
✓ Limit organic species CxHy, X(max) = 2
Databases
Refresh

• Limit organic species C_xH_y:

The main compound substances database contains several hundred organic species $C_xH_y...$ where the stoichiometric factor "x" can be large. These large organic molecules have little use in most inorganic calculations and are unlikely products in most equilibrium calculations. To drop large organic species from the data search you set "x" to the desired upper limit. For most calculations it is recommended you set x = 2, which means that organic molecules with 3 or more carbon atoms will be dropped from the data search.

• Databases:

Opens the databases window.

Databases may be added to or removed from the data search. For example private data entered through the Compound and Solution programs, or other commercial databases such as Thermo-Tech. If you have both FACT and SGTE databases then you use this option to tell the program to search both databases or search only one.

Note: Clicking on the databases bar also opens the Databases window.

Refresh:

In the Data Search menu when you change a search option (gaseous ions, aqueous species, limited data) or database selection then *Equilib* will automatically 'refresh' the system with the new options and data. However, if changes to the databases are made via another program (for example Compound and Solution) you must click on "Refresh" to update the current system.

Databases Window

Data Search			Databases			×
Help		F	ile			
Include gaseous ions (plasmas) ✓ Include aqueous species ✓ Include limited data compounds (25 C only) ✓ Limit organic species CxHy, X(max) = 2 Databases			Compound Databases (1/ Database FS50BASE.CDB SGSLBASE.CDB ELEMBASE.CDB SGPSBASE.CDB EXAMPLEBASE.CDB	75) FACT SGSL ELEM SGPS EXAM	Solution Databases Solution Databases FS50S0LN.SDA SGSLS0LN.SDA	(1/2) se Name FACT SGSL
Refresh			View FACT compou	ind data	View FACT s	solution data
More information about	coupled databases		Click on "+" column to include/ Click on the "Name" column fo	/exclude database in or "Information" on th	n the data search nat database.	base Search oupled Help
			Location C:\FACT-51\FACT	TDATA\FS50SOLN.	.SDA	
More information about	the selected databas	se. –	Type: FactSage 5.00 sol	lution database (Mar	r. 2001)	More
			 To Add a Database to the If a database does not appear "File > Add a database to the 	r in the list click on th list''.	he menu bar (top left corner)	
			To remove a database from th menu bar ''File > Remove data	ne list click on its "Na abase from the list".	ame" column and then click o Note, this does not delete th	on the le database.
			Cancel			ОК

If 'coupled' is checked (this is the recommended setting) then compound and solution databases with the same nickname (for example *FACT* or SGSL) are treated as a group. For example, if you click on the '+' column in order to include the *FACT* compound database in the data search then the program automatically includes the *FACT* solution database. Likewise if you remove the SGSL solution database from the data search the program automatically excludes the SGSL intermetallic compound database. If 'coupled' is NOT checked then the databases can be included or excluded independently. However this is not recommeded since it can lead to misleading results.

The *Equilib* module enables you to perform cooling calculations and display the phase transitions and compositions during

- Equilibrium cooling
- Scheil-Gulliver cooling with or without back diffusion
- Full annealing of cast alloys

Cooling Calculations - Table of Contents

- Section 13.1 Table of Contents
- Section 13.2 Phase transitions : FeO-MnO
- Section 13.2.4 Simple equilibrium cooling : FeO-MnO
- Section 13.3 Simple Scheil-Gulliver cooling : FeO-MnO
- Section 13.3.6 Scheil-Gulliver cooling with back diffusion
- Section 13.4 Equilibrium cooling, plots: Al-Mg-Zn
- Section 13.5 Scheil-Gulliver cooling
- Section 13.6 Fully annealing alloy AI-Mg-Zn-Mn

FeO-MnO : Phase transitions - binary phase diagram

GactSage[™]

Equilib Advanced 13.2.1

www.factsage.com

FeO-MnO : Equilibrium phase transitions at X_{FeO} = 0.5

1° Binary system <1-A> MnO + <A> FeO .

Equilib will calculate the **equilibrium** at $X_{FeO} = 0.5$ for temperatures varying from 1500°C to 1700°C and will search for All phase transitions.

FeO-MnO : Phase transitions showing liquidus and solidus

🕞 Results - Equilib 1620.23 C (page 3/4	
Output Edit Show Pages	
	C) P(atm) Energy(J) Mass(mol) Vol(litre)
1500 C 1529.11 C 1620.25 C 1700 C	
<1-A> Mn0 + <a> Fe0 =	
1.0000 mol Slag-liquid (71.392 gram, 1.0000 mol) (1620.23 C, 1 atm,	a=1.0000)
+ 0.50000 Mr	0) F Results - Equilib 1529.11 C (page 2/4)
	Output Edit Show Pages
+ 0.00000 mol Monoxide (1620.23 C, 1 atm, (0.30796 Fe + 0.69204 Mr	a=1. (C) P(atm) Energy(J) Mass(mol) Vol(litre)
where "A" on the reactant side	is 0.5(<1-A> MnO + <a> FeO =
The cutoff concentration has h	een spee (1.0000 mol Monoxide (71.392 gram, 1.0000 mol) Equilibrium solidus
*****	**************************************
H G	U (0.50000 Fe0
(J) (J) (J)	11tre)
-1.91102E+05 -5.49403E+05 0.0	0000E+0(+ 0.00000 mol Slag-liquid
	(1529.11 C, 1 atm, a=1.0000)
	+ 0.32382 Mn0)
	where "A" on the reactant side is 0.50000
	The cutoff concentration has been specified to 1.0000E-75

	н с v s ср
	(J) (J) (litre) (J/K) (J/K)
	-2.38118E+05 -5.33297E+05 0.00000E+00 1.63783E+02 6.63565E+01

FeO-MnO : Simple equilibium cooling – L-Option

1° **Right-click** on the '+' column to open the **SLAG** extended menu and **select** L- cooLing calculation.to open the *Cooling Calculation Window*

	Menu - Equilib:			
F	ile Units Parameters Help			
		T(C) P	(atm) Energy(J) Mass(mol) Vol(litre)	M 🗐 🕒 📧
	Beactants (2)			
- standard stable phase			1	
! - dormant (metastable) phase			:1-A> MnO + <a> FeO	
E - formation target phase	D. J. D.			
D	Compound species	olution species		- Custom Solutions
P - precipitate target phase	gas ideal ⊂ real 0	* + Ba	se-Phase Full Name	0 fixed activities
C - composition target	aqueous 0	F	demo-TiSP MTi204-spinel	U ideal solutions O activity coefficients
L - cooLing calculation	E pure solids 0	+ +	demo-MUNU Monoxide	Details
		FT	idemo-SPIN Spinel	
		Cooling Ca	alculation - L-Option 📃	
	species: U			
			L-Uption	clude molar volumes
	- Transitions - temperature	You may cho	oose any solution phase with the L-option.	Solutions (max 40) 2
2° Cooling Calculation Wir	Idow	Howeve	er, for Liquids the calculations are most noful since they relate to solidification.	
5				D-G-IN 1
		10	shifter shares ET does CLAC	
 select equilibrium coolii 	ng	0	olution phase. Fildemo-SLAG	m
• • • • • • • • • • • • • • • • • • •		<u> </u>	equilibrium cooling	ns only
		è	normal equilibrium calculation	Cabalata and
• click OK to close.				
		\rightarrow	display transitions + summary	
E.	actsage 6.4	1. Margan		
		Help		

FeO-MnO : Simple equilibium cooling - step, T-auto and stop

Equilib Advanced 13.2.5

JactSage[™]

FeO-MnO : Equilibrium cooling – Summary and Transitions

🖓 Results - Equilib Summary (page-1/13)		
Output Edit Show Pages		
Summa	mol) Vol(litre)	
1550 C 1540 C 1530 C 1529.11 C		
- Summary - Transitions 1630 C 1620.23 C 1620 C 1610 C	c 1600 c 1590 c 1580 c 1570 c 1560 c	
	*	
CONSTITUENTS AND PHASES AT 1529.11 C	Results - Equilib Transitions (page 0/13)	
(temperature of final disappearance of Siag-1 CONS DHASE TOTAL AMT(mol	Output Edit Show Dates	
1 1 Monoxide 2.0000E+00		
		- TT 🖳 🔁 😿
('Double-Click' on any phase listed above to	1550 C 1540 C 1529.11 C	
	Summar: Transitions - 1 1630 C 1620 23 C 1620 C 1610 C 1600 C 1590 C 1580 C 1570 C 15	60.01
SUMMARY OF REACTIONS	Summary (1.200 C 1020 C 1020 C 1010 C 1000 C 1590 C 1580 C 1570 C 15	
Casting	Temperature of transition -> 1620.23 C	
$1630 \pm 0.1620 23 C$ (DELTA H = -6.3525E+02		
Slag-liguid cooling	EQUILIBRIUM COMPOSITION OF PHASES	
	Slag-liquid	
Constituent 1	MOLE FRACTION MASS FRACTION	
1620.23 to 1529.11 C (DELTA H = -4.7017E+04	Fe 2.500E-01 3.9112E-01	
Slag-liquid -> Monoxide	Mn 2.5000E-01 3.847/E-01	1
	TOTAL MT/mol TOTAL MT/gram	
COMPOSITION OF PHASES IN CONSTITUENTS AT 1529	2.0000E+00 7.1391E+01	
(temperature of final disappearance of Siag-1		
Constituent 1		
Monoxide		=
MOLE FRACTION MA	Temperature of final disappearance of Slag-liquid -> 1529.11 C	
Fe 2.5000E-01	FOULT LEDTIN CONDOCTION OF DUNCES	
Mn 2.5000E-01	Monoxide	
0 5.0000E-01	MOLE FRACTION MASS FRACTION	
2 0000E+00	Fe 2.5000E-01 3.9112E-01	
2.0005100	Mn 2.5000E-01 3.8477E-01	
	0 5.0000E-01 2.2411E-01	
	TOTAL AMT/mol TOTAL AMT/gram	
	2.0000E+00 7.1391E+01	
	AVERAGE COMPOSITION OF ALL PRODUCT DUASES TAKEN TOGETHER	
	MOLE FRACTION MASS FRACTION	
	Fe 2.5000E-01 3.9112E-01	
	Mn 2.5000E-01 3.8477E-01	1000
	0 5.0000E-01 2.2411E-01	*
(

FeO-MnO : Equilibrium cooling - Liquidus and Solidus

Scheil target phase

The program performs a **Gulliver-Scheil cooling** calculation. That is, as phases precipitate from the **Scheil target phase** they are dropped from the total mass balance.

Generally a value of **T** (the initial temperature) and a cooling step must be specified in the **Final Conditions** frame. Normally, the Scheil calculation is repeated until the Scheil Target phase disappears. However it is possible to stop the calculation by either specifying a second temperature in the Final Conditions frame, or by specifying a target mass.

The **Scheil target phase** must be the gas phase or a real solution. If it is a liquid phase (such as FToxid-SLAG and FTsalt-liquid) then the precipitates are generally solids - it would be unusual in this case to select and include other liquids or the gas phase in the calculation.

If the **Scheil target phase** is the **gas phase** then the precipitates could be any or all of the other compound and solution phases. To activate a Scheil target gas phase, first select the gas species in the usual way. Then with the mouse-right-button click on the gas '+' check box in the compound species frame of the Menu Window - this will open the Species Selection window. Point to the '+' column of any selected gas species and then click with the mouse-right-button and then select «Scheil cooling gas phase».

FeO-MnO : Scheil-Gulliver cooling – L-Option

1° **Right-click** on the '+' column to open the **FACT-SLAG** extended menu and **select L– cooLing calculation**.to open the **Cooling Calculation Window**

	🕞 Menu - Equilib			X
	File Units Parameters Help	T(C) P(atm) Energy(J) Mass((mol) Vol(litre)	IN 🗩 🖻 😿
 - standard stable phase ! - dormant (metastable) phase F - formation target phase P - precipitate target phase 	Reactants (2) Products	<1-A> MnO + <a>	> Fe0	Custom Solutions
L - cooLing calculation	gas ⓒ ideal C real 0 aqueous 0 pure liquids 0 pure solids 0 v suppress duplicates apply		Full Name Monoxide Slag-liquid	0 fixed activities 0 ideal solutions 0 activity coefficients Details seudonyms
2° Cooling Calculation	Vindow	L-Uption You may choose any solution ph However, for Liquids the ca meaningful since they relat	hase with the L-option. Iculations are most re to solidification.	include molar volumes al Species (max 700) 5 al Solutions (max 30) 2
 select Scheil-Gulliver check √ transitions + click OK to close. 	cooling summary.	Solution phase: FT de C equilibrium cooling Scheil-Gulliver coo C normal equilibrium	mo-SLAG	Default quilibrium normal predominant Copen Calculate >>
	FactSage			

FeO-MnO : Scheil cooling – Summary and Transitions

esults - Equilib Summary (page-1/11)				
out Edit Show Pages				
T(C) P(atm) Energy(J) Mass(m	ol) Vol(litre)	111 🕞 🕒 🐺		
25 C 1403.47 C				
mary Transitions 1625 C 1620.23 C 1600 C 1575 C 1550 C 1	25 C 1500 C 1475 C 1450 C			
CHETL-GULLIVER COOLING ONSTITUENTS AND PHASES AT 1403.47 C	Summary			
temperature of final disappearance of Slag-liquid)				
1 1 Monoxide 2.0000E+00 7.139	E Results - Equilib Transition	ons (page 0/11)		
'Double-Click' on any phase listed above to recycle :	t Output Edit Show Pages			
UMMARY OF REACTIONS		T(C) P(atm) E	nergy(J) Mass(mol) Vol(litre	
coling 625 to 1620.23 C (DELTA H = -3.1022E+02 J)	Summary - Transitions - 1	625 C 1620.23 C 1600 C 15	575 C 1550 C 1525 C	1500 C 1475 C 1450 C
Tag-Tiquia cooling	Temperature of fina	l disappearance of Slag	-liquid -> 1403.47	c ^
onstituent 1				
820.23 to 1403.47 C (DELIA H = -8.54251+03 3) lag-liquid -> Monoxide	AVERAGE COMPOSITION	OF ALL PRODUCT PHASES MOLE FRACTION	MASS FRACTION	Transitions
	Fe	2.5000E-01	3.9112E-01	Transitions
OMPOSITION OF PHASES IN CONSTITUENTS AT 1403.47 C	Mn	2.5000E-01	3.8477E-01	
		TOTAL AMT/mol	TOTAL AMT/gram	
onstituent 1		2.0000E+00	7.1391E+01	
MOLE FRACTION MASS FRACT	REACTION BETWEEN 16	20.23 C AND 1403.47 C		
e 2.5000E-01 3.9112E- 2.5000E-01 3.8477E-				
5.0000E-01 2.2411E-	1 Slag-liquid -> Mono	xide		
TOTAL AMT/mol TOTAL AMT/	r Reactants	10000000000000000000000000000000000000	12022200000000	
	Slag-liguid	-2.0000E+00	-7.1391E+01	
				=
	Products (Constitue Monoxide	nt 1)		
		MOLE FRACTION	MASS FRACTION	
	Fe	2.5000E-01	3.9112E-01 3.8477E-01	
	0	5.0000E-01	2.2411E-01	
		TOTAL AMT/mol	TOTAL AMT/gram	
		2.0000E+00	7.1391E+01	
	CONSTITUENTS AND PH	ASES AT 1403.47 C		*

FeO-MnO : Scheil cooling – Start and Stop

🗘 Results - Equilib Summary (page-1/11)		
Output Edit Show Pages T(C) P(atm) Energy(J) Mass(mol) 1425 C 1403.47 C Summary Transitions 1625 C 1620.23 C 600 C 1575 C 1550 C 1525 SCHEIL-GULLIVER COOLING CONSTITUENTS AND PHASES AT 1403.47 C (Lemperature of final disappearance of Slag-liquid)	Start of solidification at 1620.23°C	
CONS. PHASE TOTAL AMT/mol TOTAL AMT 1 1 Monoxide 2.0000E+00 7.1391E ('Double-Click' on any phase listed above to recycle it SUMMARY OF REACTIONS	Image: Constraint of the second se	×
Cooling 1625 to 1620.23 C (DELTA H = -3.1022E+02 J) Slag-liquid cooling Constituent 1 1620.23 to 1403.47 C (DELTA H = -8.5425E+03 J) Slag-liquid -> Monoxide COMPOSITION OF PHASES IN CONSTITUENTS AT 1403.47 C (temperature of final disappearance of Slag-liquid) Constituent 1	Market Stress 1403.47 C Summary Transitions - 1625 C 1620.23 C 1600 C 1575 C 1525 C 1500 C 1475 C 1450 C Temperature of final disappearance of Slag-liquid -> 1403.47 C AVERAGE COMPOSITION OF ALL PRODUCT PHASES TAKEN TOGETHER MOLE FRACTION MASS FRACTION Fe 2.5000E-01 3.9112E-01 0 5.0000E-01 2.2411E-01 TOTAL AMT/mol TOTAL AMT/gram 2.0000E+00 7.1391E+01	
The size of the cooling step et calculated results. Here the st 1376.68°C. The end of Scheil	ffects the tep 5°C gives solidification	
should be at 1370.91°C – the of FeO. With a much smaller sone obtains ~ 1370.9°C	melting point step, 0.1°C, CONSTITUENTS AND PHASES AT 1403 47 C	

FeO-MnO : Scheil cooling – incremental vs. accumulated

Equilib Advanced 13.3.5

JactSage[™]

- In Scheil-Gulliver cooling with back diffusion, specified elements are permitted to equilibrate between phases during cooling. Other elements, once precipitated, remain in their solid phases and are removed from the mass balance as in regular Scheil cooling. After each incremental temperature decrease, *Equilib* permits exchange of only the diffusing elements among phases until their chemical potentials are the same in all phases.
- The following example is for an Fe-Cr-C alloy cooled from the liquid state with back diffusion of interstitial carbon.
- Input is exactly as in regular Scheil cooling except that the diffusing elements are specified.
- Output is similar to regular Scheil cooling.

Scheil Cooling with Back Diffusion

Al-Mg-Zn : Equilibrium cooling X_{Mg}=0.8 X_{Al}=0.15 X_{Zn}=0.05

AI-Mg-Zn polythermal liquidus projection calculated by *Phase Diagram* with data taken from FTlite – FACT light alloy databases

Equilib Advanced 13.4

www.factsage.com

GactSage[™]

Al-Mg-Zn : Equilibium cooling – L-Option

	p:							
L-option	rameters Help	rameters Help						
You may choose any solution phase with the L-option. However, for Liquids the calculations are most meaningful since they relate to solidification.]	T(C) P(atm) Energy(J) Mass(mol) Vol(litre)						
Solution phase: FTlite-Liqu			80 Mg + 15	Al + 5 Zn				
equilibrium cooling								
C permategravitibrium coloutation	cies	- Solution spe	cies		Custom Solutions			
 Normal equilibrium calculation 	eal C real 0	- +	Base-Phase	Full Name 🔺	0 fixed activities			
display transitions + summary	0	IL	FTlite-Liqu	Liquid	0 ideal solutions			
	ls 0	the second se	FTlite-FCC	FCC_A1	U activity coefficients			
Help	s O	I	FTlite-HCP	HCP_A3	Details			
	duplicates apply		FTlite-BCC	BCC_A2	Pseudonyms			
			Filite-LU14	Laves_U14	apply T List			
	species: 0		FTIRe-LUID	Laves_UID				
			FTILe-LC36A	Beta AlMa	🔲 include molar volumes			
Equilibrium FTlite-Liqu Cooling step Mass	cooling : 10 T-auto: 🔽 (mol): 0	Legend I - immiscible L - Equilibriu + - selected	e 7 m cooLing 8	Show C all I selected species: 98 solutions: 22 Select	<u>Total Species (max 1500)</u> 98 <u>Total Solutions (max 40)</u> 22 			
Equilibrium Cooling	ons				Equilibrium			
Equilibrium cooling		T(C)	P(atm)	Product H(J)	normal C normal + transition			
of Liquid Al-Mg-Zn		600	1		transitions only			
• cooling stop (10)	Table 🔽	Equilibriun	n cooling - T(start) :	= T-auto, T(stop) = 0 mole	para edit Calculate >>			
- cooming step 10		41. 43			para car			
 T-auto √ 				un hanonan				
• TINAL MASS U								

Equilib Advanced 13.4.1

GactSage[™]

Al-Mg-Zn : Equilibium cooling – Summary of Results

	🕼 Results - Equilib Summary (page-1/18)
	Output Edit Show Pages
	🗅 🚘 🖾 🚮 🛐 T(C) P(atm) Energy(J) Mass(mol) Vol(litre) 👖 📑 🐺
	420 C 410 C 404.48 C 400 C 390 C 380 C 370 C 364.35 C 364.35 C
	Summary Transitions 500 C 497.61 C 490 C 480 C 470 C 460 C 450 C 440 C 430 C
	SUMMARY OF REACTIONS
Liquidus temperature	
- 407 61°C	Cooling 500 to 497 61 C (DELTA H = -7 4229E+03 J)
= 497.01 C	Liquid cooling
	Constituent 1
	497.61 to 404.48 C (DELTA H = -5.8385E+05 J)
	Liquid -> HCP_A3
Constituent 1 is	Constituent 2 Constituent 2 IS a Dinary
primary hep formed	
	$101 49^{\circ} \text{ cond } 261 25^{\circ} \text{ cond } 261 25^$
between 497.61°C	Constituent 3
and 404.48°C	Liquid + Gamma -> HCP_A3 + Phi
	CONTRACTION OF ANIMARY IN CONCEPTIONING AN ACCORD
	(temperature of final disappearance of Liquid)
Microstructural	
Where structural	Constituent 1 HCP A3
constituents, and	MOLE FRACTION MASS FRACTION
the phases in them	Zn 1.6531E-02 4.2984E-02 Al 5.9743E-02 6.4109E-02
	Mg 9.2373E-01 8.9291E-01
	TOTAL AMT/mol TOTAL AMT/gram

Al-Mg-Zn : Equilibium cooling – Plot Results

ut Edit Show Pages					
Save or Print	T(C) P(atm) B	nergy(J) Mass(mol) Vol(litre)		111 🖳 🕒 😿	
Plot + F	Plot Results				
Equilib Results file	Repeat Plot - g	ram vs T(C)	430 C		
Stream File	Plot: gram	vs T(C)			
Fact-XML	ile Help				
		80 Mg + 15 Al + 5 Zn		•	
Fact-Optimal	Axes	Variables	Minimum	Maximur	n
Fact-Function-Builder		activity	0	1.	
Refresh		mole mole	0	Axes: gram vs T(C)	
T1	Y-axis	gram	0 γ.	variable X-variable Sw	ap Axes
quid -> HCP_A3 + Gamma		weight %	0		
nstituent 3	the second s	Alpha	0	- Y-axis	- X-axis
54.35 C (isothermal) (DELT	X-axis	T(C)	364.35	gram	T(C)
iquid + Gamma -> HCP_A3 + F		P(atm)	1.		23
		Up(J)	3098.2	maximum 2000	maximum 50(
MPOSITION OF PHASES IN CON		G[J]	-3.57808	minimum 0	minimum 250
emperature of final disapp		Vol(litre)	0		
onstituent 1		H[J]	8.37918	tick every 250	tick every 10
CP_A3		V(litte)	55420		
		5(J)		97.	
1		- page -	(1.c.)	Connect	Deficie
	Axes	Species	Graph		nellesn
9	gram	0 selected	- Labels	color 🖌 tulls	creen
	vs T(C)	Select	size: 9 no: 9	reactants ⊂ View	ver re
	Axes	Repeat	C integer #	Plot >>	

Al-Mg-Zn : Equilibium cooling – Plot Results

Al-Mg-Zn : Equilibium cooling – Plot Results

Al-Mg-Zn : Scheil cooling X_{Mg}=0.8 X_{Al}=0.15 X_{Zn}=0.05

AI-Mg-Zn polythermal liquidus projection calculated by *Phase Diagram* with data taken from **FTlite** – **FACT light alloy databases**

Equilib Advanced 13.5

www.factsage.com

Al-Mg-Zn : Scheil-Gulliver cooling – L-Option

F Menu - Ec	uilib:			_ _ ×
Cooling Calculation - L-Option	Parameters Help	T(C) P(atm) Energy(J)	Mass(mol) Vol(litre)	M 📑 🛃
You may choose any solution phase with the L-option. However, for Liquids the calculations are most meaningful since they relate to solidification.	(3)	80 Mg + 15 A	l + 5 Zn	
Solution phase: FTlite-Liqu C equilibrium cooling Image: Scheil-Gulliver cooling C normal equilibrium calculation Image: Gradient cooling Image: Gradient cooling Image: Gradient cooling Image: Gradient cooling <tr< th=""><th>species ideal C real 0 ous 0 olids 28 ess duplicates apply species: 28 ling Options o: 10 T-auto: V s(mol): 0</th><th>Solution species IL FTlite-Liqu I FTlite-FCC I FTlite-HCP I FTlite-BCC I FTlite-LC14 I FTlite-LC15 I FTlite-LC15 I FTlite-LC36A + FTlite-Beta Legend I I - scheil cooLing + + - selected 8</th><th>Full Name ▲ Liquid ■ FCC_A1 ■ HCP_A3 ■ BCC_A2 ■ Laves_C14 ■ Laves_C15 ■ ALaves_C36 ■ Beta_AlMg ▼ now C all (* selected \$ pecies: 98 lutions: 22</th><th>Custom Solutions 0 fixed activities 0 ideal solutions 0 activity coefficients Details Pseudonyms apply List include molar volumes <u>Total Species (max 1500)</u> 126 <u>Total Solutions (max 40)</u> 22</th></tr<>	species ideal C real 0 ous 0 olids 28 ess duplicates apply species: 28 ling Options o: 10 T-auto: V s(mol): 0	Solution species IL FTlite-Liqu I FTlite-FCC I FTlite-HCP I FTlite-BCC I FTlite-LC14 I FTlite-LC15 I FTlite-LC15 I FTlite-LC36A + FTlite-Beta Legend I I - scheil cooLing + + - selected 8	Full Name ▲ Liquid ■ FCC_A1 ■ HCP_A3 ■ BCC_A2 ■ Laves_C14 ■ Laves_C15 ■ ALaves_C36 ■ Beta_AlMg ▼ now C all (* selected \$ pecies: 98 lutions: 22	Custom Solutions 0 fixed activities 0 ideal solutions 0 activity coefficients Details Pseudonyms apply List include molar volumes <u>Total Species (max 1500)</u> 126 <u>Total Solutions (max 40)</u> 22
Final Con	litions	T(C) P(+)		Equilibrium
 Scheil Cooling of Liquid Al-Mg-Zn cooling step '10' check T-auto √ enter final mass '0' 	s Table	600 [1 Scheil-Gulliver cooling - T(start) = T	Product H[J] ✓	normal normal + transitions transitions only open para edit

Equilib Advanced 13.5.1

GactSage[™]

Graphical output of Scheil target calculation

Calculation ends at temperature of final disappearance of liquid. Graph shows phase distribution

Al-Mg-Zn-Mn : Scheil cooling AZ91 + 0.25 wt.% Mn alloy

Equilib Advanced 13.5.3

FactSage[™]

Al-Mg-Zn-Mn : Scheil cooling – Summary and Transitions

A Recult	- Fauilib Summany (nage-1/60					
- Kesuit	s - Equilip Summary (page-1/00,		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Δ701 ± 0 3	25 wt % Mn allov:
Output	Edit Show Pages				$\neg 2 3 1 + 0.2$	
0 🗃	KML OPT J	T(C) P(atm) Energ	gy(J) Mass(g) Vol(litre	e) 👖 📴 💽 😿 📗		
510 0	505 C 500 C					
560 C	355 C 550 C 545 C 540 C	535 C 530 C 525 C	1 524 12 C 520 C	1 515 C]		0Ma $7a$ $0.25Ma$
- Summar	v - Transitions 595 C 594 16 C	1 594 07 C 590 C	585 C 580 C 51	75 C 570 C 565 C	09.73AI-	Sivig-Zh-0.25ivig
		1	545 0 546 0 5			(10, 10)
SCHEI	L-GULLIVER COOLING					(WL70)
CONST	ITUENTS AND PHASES AT 340	.89 C		Summary		
(temp	erature of final disappea	rance of Liquid)			
CONS.	PHASE	TOTAL AMT/mol	TOTAL AMT/gram		and the second se	
1	1 Al8Mn5_D810	1.3055E-05	5.0230E-04	Results - Equilib Transitions (page 0/60)		
2	1 HCP A3	2.6553E+00	6.4835E+01	Output Edit Show Pages		
2	2 Al8Mn5_D810	7.5208E-03	2.8466E-01		P(atm) Energy(J) Mass(g) Vol(litre)	III 💷 🖱 👿
		C 05017 01	1.55007101			
3	2 Mn4Al11 s1(s)	4.2235E-03	1.4544E-01			mal
1.50				360 C 325 C 350 C 345 C 340 C 355 C 3	30 C 525 C 524.12 C 520 C	
4	1 HCP_A3	6.8848E-02	1.6956E+00	Summary - Transitions - 595 C 594.16 C 594.07	C 590 C 585 C 580 C 575	C 570 C 565 C
4	2 MnAl4_s1(s)	5.4346E-04	1.7702E-02	SCHEIL-GULLIVER COOLING		
5	1 HCP A3	1.9793E-01	4.8919E+00			=
5	2 Gamma	4.5374E-01	1.1829E+01	Starting temperature -> 595 C		
5	3 MnAl4_s1(s)	8.0662E-04	2.6274E-02	Cooling step -> 5 C		Transitions
6	1 HCD 13	7 18738-03	1 81508-01	COMPOSITION OF Liquid		manontionic
6	2 Phi	1.0940E-02	3.7598E-01	MOLE FRAC	TION MASS FRACTION	
6	3 Mn4Al11_s1(s)	1.3741E-06	4.7318E-05	Zn 3.78033	1.0000E-02	
				Mn 1.1247	L-03 2.5000E-03	
7	1 HCP_A3	7.7250E-04	1.9639E-02	AL 0.24410 Mm 0.1265	-02 9.0000E-02	
	2 AlMgZn_Tau	6.7948E-04	2.9038E-02	TOTAL AM	/mol TOTAL AMT/gram	
	3 MN4AIII_SI(S)	3.49504-08	1.20355-06	4.04615	1.0000E+02	
8	1 HCP_A3	1.2677E-03	3.2228E-02			
8	2 MgZn	9.0976E-04	3.9438E-02			
-				Temperature of transition -> 594.16 (: <mark>-</mark>	
				COMPOSITION OF Liquid		
				MOLE FRAC	TION MASS FRACTION	
				Zn 3.78033	1.0000E-02	
				Mn 1.1247F	2-03 2.5000E-03	
				A1 8.24411	9.0000E-02	
				ng 9.1265	Concl TOTAL AMT/dram	
				4.0461	(+00 1.0000E+02	
				· · · · · · · · · · · · · · · · · · ·		
				Temperature of transition -> 594 07 (
						•

Al-Mg-Zn-Mn : Scheil cooling - Microstructure Constituents

Summary & Transitions				
Microstructure	CONS	PHASE	TOTAL AMT/Wt.%	DESCRIPTION
constituents of AZ91	+ 1	1 Al8Mn5_D810	0.05%	Constituent 1 594.16 to 594.07 C Liquid -> Al8Mn5_D810
0.25 wt.% Mn alloy	2	1 HCP_A3	6483.50%	Constituent 2 594.07 to 524.12 C
Results - Equilib Summary (page-1/60)	2	2 Al8Mn5_D810	28.47%	Liquid -> HCP_A3 + Al8Mn5_D810
Output Edit Show Pages Image: Show Pages Image: Show Pages T(C) P(atm) Energy(J) Mass(g) Vol(litre 510 C 505 C 500 C Sto C 525 C 520 C 560 C 555 C 550 C 545 C 540 C 530 C 525 C 524.12 C 520 C	3) 3 515 C	1 HCP_A3 2 Mn4Al11_s1(s)	1558.00% 14.54%	Constituent 3 524.12 to 447.41 C Liquid -> HCP_A3 + Mn4Al11_s1(s)
- Summary - Transitions 595 C 594.16 C 594.07 C 590 C 585 C 580 C 57	5 C 570 C 4	1 HCP_A3	169.56%	Constituent 4 447.41 to 431.70 C
CONSTITUENTS AND PHASES AT 340.89 C (temperature of final disappearance of Liquid) CONS. PHASE TOTAL AMT/mol TOTAL AMT/gram 1 1 Al8Mn5_D810 1.3055E-05 5.0230E-04	TOTAL U 0.000	2 MnAI4_s1(s)	1.//%	Liquid -> HCP_A3 + MnAI4_s1(s)
2 1 HCP_A3 2.6553E+00 6.4835E+01 2 2 Al8Mn5_D810 7.5208E-03 2.8466E-01	3.734 0.000 5	2 Gamma	1182.90%	Liquid -> HCP_A3 + Gamma + MnAl4_s1(s)
3 1 HCP_A3 6.3501E-01 1.5580E+01 3 2 MnAll1_s1(s) 4.2235E-03 1.4544E-01	8.931 5 3.910	3 MnAl4_s1(s)	2.63%	
4 2 MnAl4_s1(s) 5.43462-04 1.7022-02 5 1 HCP_A3 1.97932-01 4.8919E+00 5 2 Gamma 4.53742-01 1.1829E+01 5 3 MnAl4_s1(s) 8.0662E-04 2.6274E-02 6 1 HCP_A3 7.1873E-03 1.8150E-01	5.131 6 2.784 6 5.855 6 7.614 6	1 HCP_A3 2 Phi 3 Mn4Al11_s1(s)	18.15% 37.60% 0.00%	Constituent 6 364.34 to 342.67 C Liquid -> HCP_A3 + Phi + Mn4Al11_s1(s)
6 2 Phi 1.09402-02 3.75982-01 6 3 Mn4All1_s1(s) 1.37412-06 4.73182-05 7 1 HCP_A3 7.72502-04 1.96392-02 7 2 AlWgZn_Tau 6.79482-04 2.90382-02 7 3 Mn4All1_s1(s) 3.49502-08 1.20352-06	1.395 1.272 7 1.085 7.677 3.235 7	1 HCP_A3 2 AlMgZn_Tau 3 Mn4Al11 s1(s)	1.96% 2.90%	Constituent 7 342.67 to 340.89 C Liquid -> HCP_A3 + AIMgZn_Tau + Mn4Al11_s1(s)
8 1 HCP_A3 1.2677E-03 3.2228E-02 8 2 MgZn 9.0976E-04 3.9438E-02	1.788 1.089 	1 HCP_A3	3.22%	
Final disappearance	8	2 MgZn 3 AlMgZn_Tau	3.94% 1.64%	Constituent 8 340.89 C (isothermal) Liquid -> HCP_A3 + MgZn + AlMgZn_Tau + Mn4Al11_s1(s)

FactSage[™]

of liquid at 340.89°C

Equilib Advanced 13.5.5

0.00%

Mn4Al11_s1(s)

8

4

Al-Mg-Zn-Mn : Scheil cooling and fully annealing cast alloy

	Scheil cooling and post equilibration (annealing) of Scheil microstructure: AZ91 alloy + 0.25 wt.% Mn										
		CONS.	РН 1	NASE `Al8Mn5'	TOTAL AMT/gram 5.2241E-04						
Tracking microstruc	ture	2 2 3	1 2 1	HCP `Al8Mn5' HCP	6.4599E+01 2.8231E-01 1.5644E+01	An	nount & A	verage C	ompositi	on of the I	HCP phase
constituen	ts	3	2	All1Mn4	1.4638E-01		wt. %	Mg	Al	Zn	Mn
Output :		4 4	1 2	HCP `Al4Mn'	1.7084E+00 1.7892E-02	2	64.599	96.19	3.67	0.125	195 ppm
Solidificati temperatu	ion re of	5	1 2	HCP `All2Mal7'	4.9213E+00 1.1878E+01	3	15.644 1.708	92.25 89.22	7.45 10.34	0.298 0.440	14.7 ppm 1.2 ppm
340.89°C		5	3	'Al4Mn'	2.6558E-02	5	4.921	88.95	10.03	1.021	0.7 ppm
		6 6	1 2	HCP Phi	1.9669E-01 4.0423E-01	6	0.197	89.77	5.14	5.086	0.1 ppm
		6	3 1	'Al4Mn'	1.7904E-05	7	0.024	90.55	2.93	6.519	0.2 ppm
		0	7	ATTTHIA	5.0190E 05	8	0.042	90.57	2.90	6.538	0.2 ppm
		7 7 7	1 2 3	HCP Tau Al11Mn4	2.4177E-02 3.5706E-02 1.4894E-06						
		8 8 8 8	1 2 3 4	HCP MgZn Tau All1Mn4	4.2084E-02 5.1501E-02 2.1364E-02 2.3786E-06						

AI-Mg-Zn-Mn : selecting HCP phase for full annealing

🗗 Result	s - Equilib Summary (page	e-1/60)			
Output	Edit Show Pages				
T(C) P(atm) Energy(J) Mass(g) Vol(litre				ļ	III 💷 🚍 🐺
510 0	505 C 500 C				
560 C	555 C 550 C 545 C 54	0 C 535 C 530 C 525 0	C 524.12 C 520 C	515 C	
- Summar	y - Transitions 595 C 5	94.16 C 594.07 C 590 C	585 C 580 C 57:	5 C 570 C 565 C	1
SCHEI	L-GULLIVER COOLING				
1010000000					
CONSI (terr	CITUENTS AND PHASES A	T 340.89 C	Ň		E
CONS.	PHASE	TOTAL AMT/mol	TOTAL AMT/gram	TOTAL VOL/dm3	
1	1 A18Mn5_D810	1.3055E-05	5.0230E-04	0.0000E+00	FactSage 6.3: Equilib
	1 100 10	0 65502100	C 40057104	0 70407 00	
2	2 A187 15 D810	7.5208E-03	2.8466E-01	0.0000E+00	
100					Do you wish to recycle Phase 1 of Constituent 2?
3	1 HCP_A3	6.3501E-01	1.5580E+01	8.9318E-03	HCD A2
	2 Mn41111 c1(c)	4 33358-03	1 45448-01	3.9104E-05	MOLE ERACTION MASS ERACTION
1'	^o Point mous	se to constit	uent 2	9.6839E-04	Zn 4.7652E-04 1.2759E-03
		d double ali		5.1305E-06	Mn 8.3198E-05 1.8719E-04
	HCF_AS al	ia aoubie-cii	CK		AI 3.3684E-02 3.7222E-02
-	2 Commo	4 52242-01	1 10202101	2.7840E-03	Mg 9.6576E-01 9.6132E-01
5	3 MnAl4 s1(s)	8.0662E-04	2.6274E-02	7.6148E-06	101AL AMI/mol 101AL AMI/gram
					2.0555E+00 0.4855E+01
6	1 HCP_A3	7.1873E-03	1.8150E-01	1.0109E-04	
6	2 Phi	1.0940E-02	3.7598E-01	1.3952E-04	
6	² 2° Click O	to recycle	ICP A3	1.2/228-08	OK Cancel
7				1.0866E-05	
7	2 AlMgZn_Tau	6.7948E-04	2.9038E-02	7.6777E-06	
7	3 Mn4All1_s1(s)	3.4950E-08	1.2035E-06	3.2358E-10	
	1 HCD 13	1 26778-02	3 22288-02	1 78318-05	
8	2 MgZn	9.0976E-04	3.9438E-02	1.0892E-05	-
1 -					

AI-Mg-Zn-Mn : HCP phase imported into Reactant Window

Equilib Advanced 13.6.3

www.factsage.com

Al-Mg-Zn-Mn : Equilibrium calculation – full annealing of HCP

🗘 Menu - Equilib								
File Units Parameters Help								
	T(C) P(atm) Energy(J) Mass(g) Vol(litre)							
Reactants (1)	(gram) 100 [R	lc_C2_P1]						
Products								
Compound species	- Solution species		Custom Solutions					
📕 gas 🕫 ideal 🗲 real 🛛 0	* + Base-Phase	Full Name Liquid	0 fixed activities 0 ideal solutions					
📕 aqueous 🛛 🛛 🖉	I FTlite-Liqu							
🔽 pure liquids 🛛 0	I FTlite-FCC	FCC_A1	U activity coerricients					
F pure solids 42	I FTlite-HCP	HCP_A3	Details					
Suppress duplicates apply	I FTlite-BCC	BCC_A2	- Pseudopuros					
	+ FTlite-CBCC	CBCC_A12						
species: 42	+ FTlite-CUB1	CUB_A13	apply I List					
	I FTlite-LC14	Laves_C14	🔽 include molar volumes					
	I FTlite-LC15	Laves_C15						
- Target - none - Estimate T(K): 1000 Mass(g): 0	Legend I - immiscible 7 + - selected 12 s	Show 🗭 all 🤇 selected species: 144 solutions: 26 Select	Total Solutions (max 40) 26					
Final Conditions			quilibrium					
A> T(C) P(atm)								
10 steps Table	150 500 5	71 calculations	open para edit Calculate >>					
FactSage Anneal at 150 to 500 °C								

Al-Mg-Zn-Mn : Plotting fully annealed HCP phase

Edit Show Pages					-		
Save or Print	• T(C)	P(atm) Energy(J) N	/lass(g) Vol(litre)	III 🕞 🕒 😿			
Plot	Plot Res	ults	260 C	an east where the			
Equilib Results file	Repeat	Plot - gram vs T(C	185 C 190 C	C 195 C 200 C 205 C			
Stream File		, ,					
icreat .		Plot: log10(gram) vs T(C)					
ormat	1						
Fact-XML	► 5.4908E-	File Help					
	6 A1		100 [Rc_C2_P1]		•		
Fact-Optimal	Mg	Axes	Variables	Minimum	Maximum		
Fact-Function-Builder	Mn 7n		activity	0	1.		
			mole	Axes: log10(gram) v	s T(C)		
efresh	Mol		mole fract.				
411	3	Y-axis	gram	Y-variable X-variable	Swap Axes		
Mn	1		weight %				
Ma	0		Alpha	-Y-axis	-X-axis		
1073	673	X-axis	1(L)	log10(gram)	[<u>T(C)</u>]		
Lattice par	ameter a/nm = 0		P(atm)				
Lattice par	ameter $c/nm = 0$	•	CP(J)	1114XIIIUIII 2.5			
c/a = 1.623	1	1 S S S	Vol(litre)	minimum -4	minimum 150		
0 gram HC	P A3#2		H(I)	tick evenu			
(150 C, 1 a	tm, a=1.000		V(litre)	0.0			
(1.7700	wt. & Al		SU				
+ 98.134	wt.% Mg		- Dade -				
+ 4.3044E-1	1 wt.% Mn		F.75700	Cancel	Refresh		
+ 5.63355-0	2 WG. 8 211	Axes	Species				
		log10(gram)) 3 selected		olor 🔽 full screen		
		VS T(C)	Select	size: 9 no: 9	actants 🦵 Viewer e name 💿 Figure		
				C integer #	1		

FactSage[™]

Al-Mg-Zn-Mn : Graph of fully annealed HCP phase

Equilibrium phase distribution in HCP phase of constituent 2 after annealing (HCP + precipitates)

Equilib Advanced 13.6.6

www.factsage.com

Al-Mg-Zn-Mn : Graph of fully annealed HCP phase

Equilibrium phase distribution in HCP phase of constituent 2 after annealing (HCP + precipitates)

AI-Mg-Zn-Mn : Tracking microstructure constituents

Scheil cooling and post equilibration (annealing) of Scheil microstructure: AZ91 alloy + 0.25 wt.% Mn

Tracking microstructure constituents

Annealing: Phases vs T for HCP in the different microstructural constituents

Amount & Average Composition of the **HCP phase** at 340.89°C

GactSage[™]

Equilib Advanced 13.6.8

450

500

Al₁₁Mn₄

400

- In certain solid systems, some elements diffuse much faster than others. Hence, if an initially homogeneous single-phase system at high temperature is quenched rapidly and then held at a lower temperature, a temporary **paraequilibrium state** may result in which the rapidly diffusing elements have reached equilibrium, but the more slowly diffusing elements have remained essentially immobile.

- The best known, and most industrially important, example occurs when homogeneous austenite is quenched and annealed. Interstitial elements such as C and N are much more mobile than the metallic elements.

- At paraequilibrium, the ratios of the slowly diffusing elements in all phases are the same and are equal to their ratios in the initial single-phase alloy. The algorithm used to calculate paraequilibrium in FactSage is based upon this fact. That is, the algorithm minimizes the Gibbs energy of the system under this constraint.

- If a paraequilibrium calculation is performed specifying that no elements diffuse quickly, then the ratios of all elements are the same as in the initial homogeneous state. In other words, such a calculation will simply yield the single homogeneous phase with the minimum Gibbs energy at the temperature of the calculation. Such a calculation may be of practical interest in **physical vapour deposition** where deposition from the vapour phase is so rapid that phase separation cannot occur, resulting in a single-phase solid deposit.

- Paraequilibrium phase diagrams and minimum Gibbs energy diagrams may be calculated with the **Phase Diagram Module**. See the Phase Diagram slide show.

Fe-Cr-C-N system at 900K

Output for a normal (full) equilibrium calculation

```
0.5 \text{ Fe} + 0.5 \text{ Cr} + 0.02 \text{ C} + 0.02 \text{ N} =
  7.4396E-02 mol BCC A2#1
   (4.0866 gram, 7.4396E-02 mol)
          (900 K, 1 atm,
                            a=1.0000)
           ( 9.6768E-07
                           Cr1C3
          + 3.1056E-06
                            Fe1C3
                        Cr1N3
          + 5.0286E-07
          + 1.6138E-06
                          Fe1N3
          + 0.23757
                         Cr1Va3
          + 0.76243
                            FelVa3)
   + 2.6944E-02 mol
                     SIGMA
   (43.703 gram, 2.6944E-02 mol)
           (900 K, 1 atm, a=1.0000)
                         Fe8Cr4Cr18
          ( 0.54775
          + 0.45225
                          Fe8Cr4Fe18)
          + 2.1157E-02 mol
                             HCP A3#1
   (2.4859 gram, 2.1157E-02 mol)
           (900 K, 1 atm,
                             a=1.0000)
          ( 2.0659E-02
                            Cr2C
          + 4.3490E-05
                          Fe2C
          + 0.94329
                           Cr2N
          + 1.9858E-03
                           Fe2N
          + 3.3949E-02
                            Cr2Va
          + 7.1468E-05
                            Fe2Va)
                                       4 phases are formed at full equilibrium
+ 3.2602E-03 mol M23C6
   (4.1658 gram, 3.2602E-03 mol)
           (900 K, 1 atm, a=1.0000)
          ( 0.81351
                     Cr20Cr3C6
          + 0.10610
                          Fe20Cr3C6
          + 7.1113E-02
                          Cr20Fe3C6
          + 9.2748E-03
                            Fe20Fe3C6)
```


Fe-Cr-C-N system at 900K

when only C and N are permitted to diffuse

Menu - Equilib <u>File</u> Units Parameters <u>Help</u> D Image: Constraints	T(K) P(atm) Energy(J) Mass(mol) Vol(litre)		
Products Compound species gas ideal real 0 aqueous 0 pure liquids 0 + pure solids 15 Default selection apply species: 15	0.5 Fe + 0.5 Cr + 0.02 C + 0.02 N Solution species * • I FSstel-LIQU J FSstel-LIQU I FSstel-BCC1 FC_A1 I FSstel-BCC1 BCC_A2 I FSstel-BCC1 BCC_A2 I FSstel-HCP1 HCP_A3 + FSstel-M23C H FSstel-M23C H FSstel-M23C H FSstel-SIGM SIGMA V	Custom Solutions O fixed activities O ideal solutions O activity coefficients Details Pseudonyms apply List V include molar volumes paraequilibrium & Gmin edit	1° Click here 2° Click on « edit » 3° Click here
- none - Estimate T(K): 1000 Mass(mol): 0	Legend I - immiscible 3 J - 3-immiscible 1 + - selected 6 Show ● all ○ selected species: 67 solutions: 15	Total Species (max 3000 Total Solutions (max 40) Total Phases (max 1500)	diffusing elements - information on paraequilibrium & Gmin
Final Conditions <a> Interview 10 steps Table	T(K) P(atm) ▼ Product H(J) ▼ 6 900 1 50 calculate	intermediate intermediate	4° Enter elements that can diffuse
FactSage		Paraed	r the list of elements that can diffuse. alculate the phase with the minimum G, enter a c line. ct from: Fe Cr N C
Output when only C and N are permitted to diffuse

Equilib Advanced 14.5

Equilib Advanced 14.6

Output when only C is permitted to diffuse

Output when only N is permitted to diffuse

Equilib Advanced 14.8

Minimum Gibbs energy calculation (no elements permitted to diffuse)

```
0.5 \text{ Fe} + 0.5 \text{ Cr} + 0.02 \text{ C} + 0.02 \text{ N} =
1.0000
            mol BCC A2#1
(54.441 gram, 1.0000 mol)
         (900 K, 1 atm,
                          a=1.0000)
                        Cr1C3
         ( 3.3333E-03
                         Fe1C3
         + 3.3333E-03
                         Cr1N3
         + 3.3333E-03
         + 3.3333E-03
                         Fe1N3
         + 0.49333
                           Cr1Va3
         + 0.49333
                           FelVa3)
                                      Mole fraction Mass fraction
         System component
                                                 0.48077 0.51290
         Fe
                                                 0.48077 0.47755
1.9231E-02 5.1457E-03
         Cr
         Ν
         С
                                                 1.9231E-02
                                                                4.4124E-03
```

The phase with the lowest Gibbs energy of this composition at 900K is the bcc phase

Using Virtual Elements to Impose Constraints

• FactSage permits the use of "virtual elements" with chemical symbols Qa, Qb, Qc,, Qz with atomic weights of 0.0. Virtual elements may be used in the modules *EQUILIB*, *PHASE DIAGRAM*, *COMPOUND* and *SOLUTION* in the same way as real elements.

• The use of virtual elements provides a useful means of applying constraints to certain equilibrium calculations as will be illustrated in the examples in this Section.

• For many of these examples you will need to activate the databases VIRT and SURF which can be found in the FACTBASE sub-folder of your FactSage folder.

• For additional examples, see:

R. Pajarre, P. Koukkari and P. Kangas, Chem. Eng. Sci., 146 (2016) 244-258 and

P. Koukkari, VTT Technology Bulletin 160 (2014), VTT Tech. Res. Ctr of Finland, Espoo, Finland.

Aqueous solution with redox reactions prohibited

- In aqueous solutions, redox reactions between oxidation states of elements (as, for example, between $SO_4[2-]$, S[2-] and $SO_3[2-]$ ions in solution) are often kinetically hindered. An unconstrained FactSage equilibrium calculation will always permit such reactions. In order to prohibit such reactions so that, for instance, the amount of $SO_4[2-]$ in the output is equal to the amount of $SO_4[2-]$ in the input, virtual elements can be employed to provide the required constraints.
- The present example considers an equilibrium between an aqueous solution, a gas phase and solid salts with such constraints applied.

Equilib - Reactants Edit Macro Table Table	Units Data Search Data E T(C) P(bar) Er	FactPS has k valuation Help hergy(J) Quantity(mol) Vol(litre)	been activate	d in this examp
Quantity(mol)	Species	Phase	(C) P(total)** Stream	u# Data
100	H20			
* 2	K2SO4(Qa)			
+ 3	K2S(Qb)	<u> </u>		
+ 1	S2	_	1	
+ 1	02	_	1	
+ 1	F2	_	1	
+ 5	KF(Qd)			
+ 7	K2SO3(Qc)			
+ 6	NaF(Qd)	_		-
+ 0	SO4(Qa)[2-]	·		-
			🗂 Initial Cor	nditions
		Next >>		

In the **Input**, all SO₄[2], S[2-], SO₃[2-] and F[-] ions are associated with equal amounts of Qa, Qb, Qc, and Qd virtual elements respectively

🗘 Equili	b - Reactants					- [×
File Edit	Macro Table	Units Data Search Data	Evaluation Help				
D 🚔	+	T(C) P(bar) E	nergy(J) Quantity(mol) Vol	(litre)		!!!	🦻 🖪 🔻
1 - 10	11 - 14						
	Quantity(mol)	Species	Phase	T(C)	P(total)**	Stream#	Data
+ 0		HSO4(Qa)[-]	-			1	
+ 0		S(Qb)[2-]	-			1	
+ 0		SO3(Qc)[2-]	-			1	
+ 0		F(Qd)[-]	-			1	

Zero amounts of SO₄(Qa)[2-], HSO₄(Qa)[-], S(Qb)[2-],SO₃(Qc)[2-] and F(Qd)[-] species are entered in order for them to appear in the species selection lists on the menu window. (Note, that SO₄(Qa)[2-] and HSO₄(Qa)[-] are both associated with the same virtual element Qa.)

Equilib Advanced 15.2.3

Aqueous species selection

File Edit Show Sort

				Fage 171:	ηcj	= 29,	. F(bar) = 1		
+	Code	Species	Data	Phase	T	V	Activity	Minimum	Maximum
	124	HS[-](aq)	FactPS	aqueous					
	125	H2S(aq)	FactPS	aqueous					
	126	SO2(aq)	FactPS	aqueous					
	127	SO3[2-](aq)	FactPS	aqueous					
	128	SO4[2-](aq)	FactPS	aqueous					
	129	S2O3[2-](aq)	FactPS	aqueous					
	130	S2O4[2-](aq)	FactPS	aqueous					
	131	S2O5[2-](aq)	FactPS	aqueous					
	132	S2O6[2-](aq)	FactPS	aqueous					
	133	S2O8[2-](aq)	FactPS	aqueous					
	134	S306[2-](aq)	FactPS	aqueous					
	135	S406[2-](aq)	FactPS	aqueous					
	136	S506[2-](aq)	FactPS	aqueous					
	137	HSO3[-](aq)	FactPS	aqueous					
	138	HSO4[-](aq)	FactPS	aqueous					
+	139	K[+](aq)	FactPS	aqueous			6.120		
+	140	SO4(Qa)[2-](aq)	FactPS	aqueous			4.4698E-04		
+	141	HSO4(Qa)[-](aq)	FactPS	aqueous					
+	142	S(Qb)[2-](aq)	FactPS	aqueous			1.665		
+	143	SO3(Qc)[2-](aq)	FactPS	aqueous			6.8380E-03		
+	144	F(Qd)[-](aq)	FactPS	aqueous			2.834		

Only these species (and Na[+]) are selected.

FactSage automatically assigns the properties of $SO_4[2-]$ to $SO_4(Qa)[2-]$, the properties of $HSO_4[-]$ to $HSO_4(Qa)[-]$, etc.

Equilib Advanced 15.2.4

Solid species selection

File Edit Show Sort

		Selecti	ed: 6/58	SOLID								
						Page 1/1 : T((C)	= 25	i, P(bar) = 1			
		+	Code	Species	Data	Phase	Τ	V	Activity	Minimum	Maximum	-
			182	KF(s)	FactPS	Carobbiite_(NaC		V				
			183	K(HF2)(s)	FactPS	Solid_Alpha		۷				
			184	K(HF2)(s2)	FactPS	Solid_Beta		۷				
			185	K2S(s)	FactPS	solid		۷				
			186	K2S2(s)	FactPS	prototype_Na20		۷				
			187	K2S3(s)	FactPS	prototype_K2S3		۷				
			188	K2S4(s)	FactPS	aP42		۷				
			189	K2S5(s)	FactPS	prototype_TI2S5		۷				
			190	K2S6(s)	FactPS	aP56		۷				
			191	K2SO3(s)	FactPS	solid		0				
			192	K2SO4(s)	FactPS	Solid_Alpha		۷				
			193	K2SO4(s2)	FactPS	Solid_Beta		۷				
			194	K3F(SO4)(s)	FactPS	beta_tl36_(140)		۷				
			195	K3F(SO4)(s2)	FactPS	alpha_cP9_(215		۷				
	1		196	K3Na(SO4)2(s)	FactPS	solid		۷				
Only these species		+	197	K2SO4(Qa)(s)	FactPS	Solid_Alpha		V	1.000			
		+	198	K2SO4(Qa)(s2)	FactPS	Solid_Beta		V	3.2719E-02			
(and Na[+]) are		+	199	K2S(Qb)(s)	FactPS	solid		V.	2.5700E-19			
		+	200	K2SO3(Qc)(s)	FactPS	solid		0	1.000			
selected.		+	201	NaF(Qd)(s)	FactPS	Villiaumite_Rock		V	1.000			
	J	+	202	KE(OH)(e)	FactPS	Carobbiite (NaC		V	1 1586E-03			

FactSage automatically assigns the properties of $K_2SO_4(s)$ to $K_2SO_4(Qa)(s)$, etc.

Equilib Advanced 15.2.5

Output Edit Show Pages Final Conditions

🗅 🖻 🖾 📓 🚺

T(C) P(bar) Energy(J) Quantity(mol) Vol(litre)


```
2.5000
            mol gas ideal
  (134.13 gram, 2.5000 mol, 61.974 litre, 2.1642E-03 gram.cm-3)
          (25 C, 1 bar,
                          a=1.0000)
         ( 0.40000
                          SO2
         + 0.40000
                          F2
         + 0.20000
                          S2
         + 1.6510E-18
                          SO3)
+ 119.25 mol aqueous
  (2429.3 gram, 119.25 mol)
         (25 C, 1 bar,
                          a=1.0000)
         ( 55,508
                          H2O liquid
         + 6.1205
                          K[+]
         + 2.8341
                          F(Qd)[-]
         + 1.6653
                          S(Qb)[2-]
         + 5.8685E-02 Na[+]
         + 6.8380E-03
                          SO3 (Qc) [2-]
         + 4.4698E-04
                          SO4(Qa)[2-])
+ 6.9877
            mol K2SO3(Qc) solid
  (1105.9 gram, 6.9877 mol)
         (25 C, 1 bar, S1, a=1.0000)
+ 5.8943
            mol NaF(Qd) Villiaumite Rocksalt B1 cF8 (225
  (247.49 gram, 5.8943 mol)
         (25 C, 1 bar, S1, a=1.0000)
+ 1.9992
            mol K2SO4(Qa) Solid Alpha
  (348.38 gram, 1.9992 mol)
```

All redox reactions have been prohibited, both between phases and within the aqueous phase. For example, the total amount of SO_3 is (100/55.508) * 0.006838 + 6.9877 = 7.000 mol as entered on the reactants window

GactSage™

Equilib Advanced 15.2.6

Entering data in a private COMPOUND (cdb) database for species containing virtual elements

- Rather than entering 0.0 moles of species such as S(Qb)[2-], SO₃(Qc)[2-], etc. on the reactants window in order for them to appear in the species selection lists as in the previous example, they may be entered and stored in a private database just like any other compounds.
- The following slides show how the species SO₄(Qa)[2-] may be entered and stored in a private database with the properties of SO₄[2-]aq copied from FactPS.

🛟 Energy: Joules Pressure:	atm SO4[2-]		-	\times
File Edit Units View T	īools ViewData Help			
Formula SO4[2-]				
r ➡ BINSBASE r ➡ ELEMBASE FactPSBASE • • • • • • • • • • • • • • • • • • •	 SO4[2-] properties Weight: 96.0626 g/mol Compound Name Sulfate Dinegative Ion 	Modified: 198 Reference no 9	i1 Jul 16 5.	

Open FACTDATA/VIRTBASE.cdb which you will find in your FactSage folder.
Drag and drop SO4[2-] from FactPSBASE to VIRTBASE

Equilib Advanced 15.3.2

This is the same example as in Section 15.2, but with data taken from the private database **VIRTBASE**

Add **FACTDATA/VIRTBASE** (which is in your **FACTSage** folder) to your list of active databases and check the "VIRT" box

🖼 🕂 🏢	T(C) P(bar) Ene	ergy(J) Quantity(mol) Vol(litre	J	III 🖳 🔁
1-9				
Quantity(mol)	Species	Phase	T(C) P(total)**	Stream# Data
+ 2	K2SO4(Qa)	 	,	1
+ 3	K2S(Qb)			1
+ 1	S2			1
+ 1	02			1
+ 1	F2	-		1
+ 5	KF(Qd)	-		1
+ 7	K2SO3(Qc)			
+ 6	NaF(Qd)			1

It is not necessary to enter 0.0 moles of SO4(Qa)[2-], etc. as in the previous example since the data will be taken from **FACTDATA/VIRTBASE**

Equilib Advanced 15.4.2

All required data have already been entered in **FACTDATA/VIRTBASE.cdb**. Select only these aqueous and solid species. Output will be identical to slide 15.2.6

	140	0000[2-](aq)	Lacu D	aqueous							
	141	HSO3[-](aq)	FactPS	aqueous							
	142	HSO4[-](aq)	FactPS	aqueous							
+	143	K[+](aq)	FactPS	aqueous							
+	144	SO4(Qa)[2-](aq)	VIBT	aqueous							
+	145	HSO4(Qa)[-](aq)	VIBT	aqueous a							
+	146	S(Qb)[2-](aq)	VIBT	aqueous a							
+	147	SO3(Qc)[2-](aq)	VIBT	aqueous a							
+	148	F(Qd)[-](aq)	VIBT	aqueous 🗸 🗸 🗸 🗸 🗸							
F	permit selection of X' species Help Suppress Duplicates Edit priority list :										

	198	K3F(SO4)(s)	FactPS	beta_tl36_(140)	V					
	199	K3F(SO4)(s2)	FactPS	alpha_cP9_(215	V					
	200	K3Na(SO4)2(s)	FactPS	solid	V					
+	201	K2SO3(Qc)(s)	FactPS	solid	0					
	202	Na(s)	VIRT	solid	V					
	203	Qa(s)	VIRT	S1	0					
	204	Na(Qa)(s)	VIRT	solid	V					
+	205	K2SO4(Qa)(s)	VIRT	Solid_Alpha	V					
+	206	K2SO4(Qa)(s2)	VIRT	Solid_Beta	V					
+	207	K2S(Qb)(s)	VIRT	solid	V					
+	208	NaF(Qd)(s)	VIRT	Villiaumite_Rock	V					
+	209	KF(Qd)(s)	VIRT	Carobbiite_(NaC	V					
	permit selection of X' species Help Suppress Duplicates Edit priority list :									

Equilib Advanced 15.4.3

- 100 g of PbO are placed in an Al₂O₃ crucible at 25 °C and heated to 1200°C. The crucible weighs 100 g.
- Calculate the heat required (assuming no heat losses) if only 5 g of Al_2O_3 dissolve in the PbO. (That is, the liquid PbO does not become saturated in Al_2O_3 .)
- This calculation can be performed by associating Qa with the AI_2O_3 which does not dissolve.

Activate **FACTDATA/VIRTBASE** in which $AI_2O_3(Qa)$ has been stored with the properties of AI_2O_3 (corundum)

<u>(Note</u>: If an initial condition for a species containing a virtual element such as $AI_2O_3(Qa)$ is to be selected, then the compound must first be entered in a compound (cdb) database.)


```
(gram) 95 Pb0 + 5 A1203 + 95 A1203(Qa) =
        (25,1,s1-FToxid,#1) (25,1,s1-FToxid,#1) (25,1,s1-VIRT,#1)
          100.00
                    gram Slag-liq
          (100.00 gram, 0.47467 mol)
                  (1200 C, 1 atm,
                                  a=1.0000)
                              wt.% A1203
                  ( 5.0000
                 + 95.000
                              wt.% PbO)
       + 95.000
                    gram Al203(Qa)_corundum(alpha)
          (95.000 gram, 0.93173 mol)
                  (1200 C, 1 atm, S4, a=1.0000)
           DELTA H
                        DELTA G
                                      DELTA V
                                                    DELTA S
                                                                DELTA Cp
             (J)
                          (J)
                                      (litre)
                                                     (J/K)
                                                                   (J/K)
        1.60492E+05 -2.64604E+05
                                    0.00000E+00
                                                  2.24696E+02
                                                                5.74004E+01
The required enthalpy
```


Equilib Advanced 15.5.3

to end-members of solutions

- The 8.1 version of the FTsalt database contains data for solid
 - compounds, solid solutions and a molten salt phase in the system $NaNO_3$, $NaNO_2$, $NaCIO_4$, NaCI.
- In a calculation with unconstrained Gibbs energy minimization, the following reaction will occur:

$$4NaNO_2 + NaClO_4 = 4NaNO_3 + NaCl$$

Furthermore, if air is present, the salt will react with N_2 and O_2 .

- In reality, the amounts of NO⁻₂, NO⁻₃, ClO⁻₄ and Cl[−] remain constant. This constraint can be applied through the use of virtual elements.

The next three slides illustrate the results when the equilibria are unconstrained

Input equimolar NaNO₃, NaNO₂, NaClO₄, NaCl plus air

Q	Equilib	- Reactar	nts									-		×
File	Edit	Macro	Table	Units	Data Search	Data [Evaluation	Help						
D	2	+	1		T(C) F	(bar) E	nergy(J) Qu	iantity(mol) N	Vol(litre	e)			🦻 🕒	\$₹
	1-6													
		Quantil	ty(mol)		Specie	\$	PI	hase		T(C)	P(total)**	Stream#	Data	
	1				NaCl				-			1		
	+ 1				NaNO3				-			1		
	• 1				NaNO2				-			1		
	+ 1				NaClO4				-			1		
	• 79				N2				-			1		
	• 21				02				-			1		

Equilib Advanced 15.6.1

Calculation of unconstrained equilibrium

File Units Parameters He	elp				
D 🖻 🖬		T(C)	P(bar) Energy(J)	Quantity(mol) Vol(litre)	111 🕞 🕒 😿
Reactants (6)					
	NaCl	+ NaNO3	+ NaNO2 +	NaClO4 + 79 N2 +	21 02
Products					
Compound species		-Solution phas	es		Custom Solutions
		* +	Base-Phase	Full Name	0 fixed activities Details
∓ gas 📀 ideal 🔿 real	29		FTsalt-SALTA	A-Salt-liquid	0 ideal solutions
aqueous	0	+	FTsalt-SALTK	K-Salt-liquid	Pseudonyms
pure liquids	0		FTsalt-SALT?	?-Salt-liquid	apply Cut
* + pure solids	11		FTsalt-B1	Rocksalt	Volume data
* - custom selection			FTsalt-hR24	ht-(Na,[K])NO3	solids and liquids = 0
species:	40		F I salt-NaNB	NaNU2(beta)	C include molar volume data
					and physical properties data
_ Taraat					📕 🔲 paraequilibrium & Gmin 🔄 edit
- none -			1	Show 🖲 all 🔿 selected	
Estimate T(K): 1000		+-selected	1		Total Species (max 5000) 44
Quantity(mail): 0	r			species: 4 Select	Total Solutions (max 200) 1
Quantity(mol): ju				solutions. 1	Total Phases (max 1500) 13
- Final Conditions					– Fauilibrium
<pre><a> </pre>		T(C)	P(bar)	▼ Product H(J) ▼	normal O normal + transitions
		550	1		C transitions only C open
10 steps 🗖 Table		r	,	1 calculation	- no time limit - Calculate >>

With unconstrained equilibrium

it can be seen that there is virtually complete reaction of CIO_4^- as well as reaction between salt and gas

```
NaC1 + NaNO3 + NaNO2 + NaC1O4 +
79 N2 + 21 02 =
 101.52
            mol gas ideal
  (2933.5 gram, 101.52 mol, 6947.8 litre, 4.2222E-04 gram.cm-3)
         (550 C, 1 bar,
                            a=1.0000)
         ( 0.77820
                           N2
         + 0.22179
                           02
         + 3.4784E-06
                           NO
         + 8.5175E-07
                           NO2
         + 2.1640E-07
                           NaC1
+ 3.2040
                  Salt-liquid
            mol
  (239.85 gram, 3.2040 mol)
         (550 C, 1 bar,
                          a=1.0000)
         ( 0.37578
                           NaC1
         + 0.61438
                           NaN03
         + 9.8458E-03
                           NaNO2
         + 1.5255E-20
                           NaC104)
   + 0.79597
                mol
                      NaCl_Halite_rocksalt_B1_cF8_(225)_Fm-3m
  (46.519 gram, 0.79597 mol)
         (550 C, 1 bar, S1, a=1.0000)
```


Equilib Advanced 15.6.3

The following slides illustrate the use of virtual elements to maintain the amounts of NO_2^- , NO_3^- , CIO_4^- and CI^- constant. A different virtual element is associated with each anion.

File	Edit	t Macro Table	Units Data Search	Data Evaluatio	on Help				
Ľ	2	+	T(C) F	P(bar) Energy(J)	Quantity(mol) Vol(liti	re)			🦻 🖪 🕅
	el								
	1.01								1
ſ		Quantitu(mol)	Snecie	¢	Phase	T(C)	P(total)**	Stream#	Data
	i	Quantity(iiioi)	NaCl(Qd)	• 					Data
L	+ 1		NaNO3(Qa)		v				
L	• 1		NaNO2(Qb)		Ŧ				
L	+ 1		NaClO4(Qc)		-				
L	+ 7	'9	N2		-			1	
L	• 2	?1	02		~			1	
L									

Equilib Advanced 15.6.4

Solid compound selection

	80	NaCI(s)	FTsalt	Halite_rocksalt_	V		
	81	NaClO4(s)	FTsalt	Solid_alpha_oS:	0		
	82	NaClO4(s2)	FTsalt	Solid_beta_(225	0		
+	83	NaNO3(Qa)(s)	FTsalt	prototype_CaCO	V		
+	84	NaNO3(Qa)(s2)	FTsalt	prototype_NaNC	V		
+	85	NaNO2(Qb)(s)	FTsalt	Solid_alpha_ol8	V		
+	86	NaNO2(Qb)(s2)	FTsalt	Solid_beta_ol16	V		
+	87	NaClO4(Qc)(s)	FTsalt	Solid_alpha_oS2	0		
+	88	NaCIO4(Qc)(s2)	FTsalt	Solid_beta_(225	0		
+	89	NaCI(Qd)(s)	FTsalt	Halite_rocksalt_	V		

These species are those entered in the reactants window. They are automatically and temporarily created in **FTsalt** with the same properties as the corresponding compounds without the virtual elements.

File Units Parameters Help									
D 🛎 🖬	T(C) P(bar) Energy(J) Quantity(mol) Vol(litre)	🚻 📑 🛃							
Reactants (6)	ctants (6)								
NaCl(Qd) +	NaCl(Qd) + NaNO3(Qa) + NaNO2(Qb) + NaClO4(Qc) + 79 N2 + 21 O2								
Products									
Compound species	Solution phases	Custom Solutions							
	* + Base-Phase Full Name	0 fixed activities Details							
* + gas ⊙ideal ⊂real 29	FTsalt-SALTA A-Salt-liquid	U ideal solutions							
aqueous 0	+ FTsalt-SALTK K-Salt-liquid	Pseudonyms							
pure liquids 0	FTsalt-SALT? ?-Salt-liquid								
* + pure solids 11	FTsalt-B1 Rocksalt	Volume and physical prop data							
* - custom selection	FTsalt-hR24 ht-(Na,[K])NO3	 solids and liquids = 0 							
species: 40	FTsalt-NaNB NaNO2(beta)	🖉 use only molar volume data							
		O use V & phys. property data							
		📕 🔲 paraequilibrium & Gmin 🛛 edit							
larget	Legend								
T - K T (K) 1000	+-selected 1	Total Species (max 5000) 44							
Estimate I (K): 11000	species: 4 Select	Total Solutions (max 200) 1							
Quantity(mol): 0	solutions: 1	Total Phases (max 1500) 13							
Final Conditions		Equilibrium							
<a> 	T(C) P(bar) Volume Product H(J)	normal C normal + transitions							
	550 1	C transitions only C open							
10 steps 🗖 Table	1 calculation	- no time limit - Calculate >>							

The end-members of the solutions must now also be associated with the virtual elements. This could be done by creating a private solution (sln) file with the **SOLUTION** module, but can also be done during execution as shown on the next slide.

Adding virtual elements to the end-members of a solution

1) Right click on the name FTsalt-SALTK on the menu window (previous slide).

- The end-members of the three solid solutions (see previous slide) are modified in a similar fashion

Equilib Advanced 15.6.7

Output at 550°C. No reactions within the salt or with the gas occur

¢	🕈 Equilib - Res	ults 550 C EQUIINTE In	itel 2020-11-06	_		\times
0	utput Edit	Show Pages Final Cor	ditions			
[I I	T(C) P(bar) Energy(J) Quantity(mol) Vol(litre)	TM	🖳 [7
Ī	NaCl (Qd)	+ NaNO3(Qa) +	NaNO2(Qb) + NaClO4(Qc) +	 Fact	Sage (3.0 ^
l	79 N2 +	21 02 =				
	100.000 (2885.0	<pre>mol gas_idea gram,100.000 mol, (550 C, 1 bar, (0.79000 + 0.21000 + 3.4102E-06 + 8.1254E-07 + 2.8430E-10 + 1.0621E-13 + 3.0241E-14 + 2.0689E-14 + 4.3925E-17 + 2.7323E-18</pre>	1 6844.1 litre, 4.2154E-04 gram.cm-3) a=1.0000) N2 02 N0 N02 N20 0 N03 03 N203 N203 N20			
	+ 4.0000 (334.87	mol Salt-liq gram, 4.0000 mol) (550 C, 1 bar, (0.25000 + 0.25000 + 0.25000 + 0.25000	uid a=1.0000) NaNO3(Qa) NaC1(Qd) NaNO2(Qb) NaClO4(Qc))			

Output at 200°C

Solid compounds appear, but numbers of moles of each anion remain constant. For example, the number of moles of CIO_4^- is 2.5692(0.19572) + 0.49715 = 1.000 mol as entered in the reactants window. File Edit Format View Help 79 N2 + 21 O2 = 100.00 gas ideal mol (2885.0 gram, 100.00 mol, 3934.0 litre, 7.3336E-04 gram.cm-3) (200 C, 1 bar, a=1.0000) (0.79000 N2 + 0.2100002 + 2.5605E-08 NO2 + 1.9540E-10 NO + 4.0601E-14 N20 + 1.4525E-17 NO3 + 9.4120E-19 N204) + 2.5692mol Salt-liquid (219.44 gram, 2.5692 mol) (200 C, 1 bar, a=1.0000) (0.38922 NaNO3(Qa) + 2.5836E-02 NaC1(Qd) + 0.38922NaNO2(Qb) + 0.19572NaC104(Qc)) mol NaCl(Qd) Halite (rock salt structure) + 0.93362(54.563 gram, 0.93362 mol) (200 C, 1 bar, S1, a=1.0000) + 0.49715mol NaClO4(Qc) Solid alpha (60.871 gram, 0.49715 mol) (200 C, 1 bar, S1, a=1.0000) + 0 mol NaNO2(Qb) Solid beta (200 C, 1 bar, S2, a=0.81513) + 0 NaNO2(Qb)_Solid_alpha mol (200 C, 1 bar, S1, a=0.79226) + 0 mol NaNO3(Qa) Solid II (200 C, 1 bar, S1, a=0.78888) + 0 mol NaNO3(Oa) Solid I (200 C, 1 bar, S2, a=0.69470)

Equilib Advanced 15.6.9

In this example,

FeAl₂O₄ spinel is cooled rapidly from 1473 K to 298.15 K in a calorimeter. Calculate the heat evolved, given that the equilibrium cation distribution between tetrahedral and octahedral sites at 1473 K is retained metastably at 298.15 K.

Input to calculate equilibrium cation distribution

File Units Parameters Help									
	T(K) P(bar) Energy(J) Quantity(mol) Vol(litre)	👖 📑 🕞 😿							
- Reactants (1) FeAl204									
Products									
Compound species	Colution phases	Custom Solutions							
	* + Base-Phase Full Name	0 fixed activities Details							
📕 gas 💿 ideal 🔿 real 🛛 🛛	FToxid-SLAGA A-Slag-liq all oxides + S	0 ideal solutions							
aqueous 0	+ FToxid-SPINA A-Spinel	Pseudonyms							
pure liquids 0	FToxid-MeO_A A-Monoxide	apply Cuic							
species: 0		assume molar volumes of solids and liquids = 0 include molar volume data and physical properties data							
Target		Virtual species:							
- none -	+-selected 1 V Show • all • selected	Total Species (max 5000) 12							
Estimate T(K): 1000	species: 12 Select	Total Solutions (max 200) 1							
Quantity(mol): 0	solutions: 1	<u>Total Phases (max 1500)</u> 1							
- Final Conditions		– Equilibrium							
<a> 	T(K) P(bar) Product H(J)	normal C normal + transitions							
	298.15 1473 1	O transitions only O open							
10 steps 🗖 Table	2 calculations	- no time limit - Calculate >>							

GactSage[™]

Equilib Advanced 15.7.3

Input to calculate enthalpy at 298.15 K when degree of inversion is constrained to be 0.265

File	Edit	Macro	Table	Units	Data Search	Data Evaluat	ion Help					
Ľ	2	+			T(K) F	(bar) Energy(J) Quantity(mo	l) Vol(litre	:)		111	🦻 🕒 😼
	1-2											
		Quanti	ty(mol)		Specie	8	Phase		T(K)	P(total)**	Stream#	Data
	1				FeAl204			-			1	
	+ 0.2	265		_	Qa			-				
	2	•			,	,				,	,	
										_		
											Initial Condi	tions
							_					
						Ne	xt>>					

Enter 0.265 moles of a virtual element to be linked to the endmembers related to AI[3+]T

File Units Parameters Help	T(K) P(bar) Energy(J) Quantity(mol) Vol(litre) FeAl204 + 0.265 Qa	11 📑 🕞	
Products Compound species gas I ideal I real aqueous pure liquids pure solids	Solution phases Full Name * + Base-Phase Full Name FToxid-SLAGA A-Slag-liq all oxides + S * * + FToxid-SPINA A-Spinel FToxid-MeO_A A-Monoxide FToxid-CORU M203(Corundum)	Custom Solutions O fixed activities O ideal solutions Pseudonyms apply Edit Volume data Solutions Solids and liquids = 0	Right click to add virtual element to end-members
species: 0 Target - none - Estimate T(K): 1000 Quantity(mol): 0	Legend + - selected 1 species: 12 solutions: 1	 include molar volume data and physical properties data paraequilibrium & Gmin edit Virtual species: 0 Total Species (max 5000) 12 Total Solutions (max 200) 1 Total Phases (max 1500) 1 	
Final Conditions <a> Image: Second steps Image: Table	T(K) P(bar) ✓ Product H(J) ✓ 298.15 1 1 1 1 calculation - - -	quilibrium normal O normal + transitions transitions only O open no time limit - Calculate >>	

	li (₽) s	F Selection - Equilib Page 1/1 : T(K) = 550, P(bar) = 1											
	File	Edit S	how Sort										
	Selec	cted: 12/12 [FT] Warning! It is recommended that you select all the components of a solution phase.											
					Page 1/1 : T((K) =	= 550), P(bar) = 1					
	+	Code	Minimum	M	aximum								
	+	48	Fe304	FToxid	FToxid-SPINA								
	+ 49 Fe304[1-] FToxid FToxid-SPINA												
	+ 50 Fe304[1+] FToxid												
	+	51	Fe304[2-]	FToxid	FToxid-SPINA								
	+	52	Fe104[5-]	FToxid	FToxid-SPINA								
	+	53	Fe104[6-]	FToxid	FToxid-SPINA								
Add Oo to formulae	+	54	Fe1Al204	FToxid	FToxid-SPINA			1.000	1.000		1.000		
Add Qa to formulae	+>	55	Al304Qa[1+]	FToxid	FToxid-SPINA								
(see slide 15 6 7)	+	56	Al1Fe204Qa[1-]	FToxid	FToxid-SPINA								
(See Silde 15.0.7)	+	57	Al104[5-]	FToxid	FToxid-SPINA								
	+	58	Fe1Al204[1+]	FToxid	FToxid-SPINA								
	+	59	Al1Fe204[1+]	FToxid	FT oxid-SPINA								

FeA1204	=		
1.0000	mol Spinel		
(173.8)	l gram, 1.0000 mol))	
	(1473 K, 1 bar,	a=1.0000)	
	(9.7426E-02	Fe304[2-]	
	+ 0.63741	Fe1A1204	
	+ 0.23001	A1304[1+]	
	+ 3.5156E-02	AllFe2O4[1-])	
	Site fraction of	sublattice consti	tuents:
	Fe[2+]T	0.73484	Stoichiometry = 1
	A1[3+]T	0.26516	
	Fe[2+]0	0.13258	Stoichiometry = 2
	A1[3+]0	0.86742	_

The degree of inversion is equal to AI[3+]T which is the sum of the amounts of end-members $(AI)[AI]_2O_4[+]$ and $(AI)[Fe]O_4[-]$. By adding Qa to these formulae, we constrain the degree of inversion to be equal to Qa.

Output at 298.15 K with degree of inversion constrained to be 0.265

Heat evolved during rapid cooling from 1473 K to 298.15 K Constrained inversion: $(1.96299 - 1.75790) \times 10^6 = 205090$ Joules/mol Equilibrium inversion: $(1.97892 - 1.75790) \times 10^6 = 221020$ Joules/mol

actSage[™]

- 1.0 mol of an equimolar Zn-Mg solution is placed in a 50 litre container with 1.5 mol Ar at 1273 K.
- Follow the compositions of the liquid and gaseous phases with time as evaporation occurs, assuming gas/liquid equilibrium with constraint on the total amount of remaining liquid.

	File	Edit	Macro	Table	Units	Data	Search	Data B	Evaluatio	n Help					
	D	ž	+				T(K) P	'(atm) E	nergy(J)	Quantity(mo	l) Vol(lit	re)			🦻 🕒 😼
	1	Л													
		4													1
	Г		Quantil	y(mol)			Species	\$		Phase		T(K)	P(total)**	Stream#	Data
- 1		0.5				Zn					-			1	
- 1	•	0.5				Mg					-			1	
- 1	•	1.5			[Ar		_			-			1	
- 1	1				— I	Qa		_			-			1	
	L	<i>j</i> .	Î		,				,			,	,	,	
Th wi	ne a II v	am ary	ount ′ with	of C tim	2a ie										

	,	T(K) P(atm) Energy(J) Quantity(mol) Vo	l(litre)	👖 📑 🕒 🕱					
Reactants (4)		0.	5 Zn + 0.5 Mg	+ 1.5 Ar + Q	a						
Products											
Compound species	Compound species Solution phases Full Name										
📊 두 gas 💿 ideal 🔿 real 👒	4	+	FTlite-Ligu	Liquid	0	ideal solutions					
aqueous ()		FTlite-A1	FCC-A1	Pse	eudonyms					
pure liquids ()		FTlite-A2	BCC-A2		apply 🗌 🔄 Edit					
pure solids ()		FTlite-A3	HCP-A3	Vol	ume data					
			FTlite-A3''	HCP-Zn Protot	ype-Mg 💿 🔅	assume motar volumes of solids and liquids = 0					
species:	4		FTlite-C14	C14 Prototype-	MgZn2	nclude molar volume data					
op solos.			FTlite-C36	C36 Prototype	MgNi2	and physical properties data					
Estimate P(atm): 1.U Quantity(mol): 0				species: 2 solutions: 1	Select <u>Total</u>	Solutions (max 200) 1 Phases (max 1500) 2					
Final Conditions		T(V)			Equilib	rium					
< <u> <</u> < < > < < > < < > < > < > < > < > <	_	1(N)	Platmj	Product V(I C normal + transitions					
	1273			50	C transi	tions only O open					
10 steps Table				1 cal	culation - no tim	e limit · Calculate >>					
Selected: 2/2 FTlite-Liqu											
		Page	e 1/1 : T(K) = 127	3, P(atm) = 5.222	2						
+ Code End-member	Data		Phase T V	/ Activity	Minimum	Maximum					
+ <u>35</u> Mg(Qa)	FTlite	FTlite	e-Liqu								
+ 36 Zp(Qa)	FTlite	FTlite	e-Liau								
		_									

Associate Qa with each end-member of the liquid. There are thus Qa moles of liquid in total

GactSage[™]

Outputs as amount of liquid decreases from Qa=1.0 (only liquid) to Qa = 0.0 (only vapour)

Equilib Advanced 15.8.3

- For a description of paraequilibrium, see Section 14 where the
 FactSage software for calculating paraequilibrium is described.
- The present example illustrates the principle behind these calculations.
- An Fe(0.96)Cr(0.04)C(0.01) alloy is rapidly cooled from the γ-austenite (fcc) range to 700 °C. Carbon diffuses between phases, but the Fe/Cr ratio remains constant in all phases.

The **FSstel** database is activated

File	e Edi	t Macro Table	Units Data S	earch Data Evalu	iation Help				
Ľ	1 🖻	+		T(C) P(atm) Energ	y(J) Quantity(mol) Vo	ol(litre)			🦻 🖪 📢
	1 - 6								
		Quantity(mol)	S	pecies	Phase	T(C)	P(total)**	Stream#	Data
		0.04	Cr			-		1	
	+ [0.96	Fe			-		1	
	+ [<a>	C			-		1	
	+ [0	Qa			-			
	+ [D	Qb			-			
	+ [D	Qc			-			

Zero amounts of three virtual elements are entered

Equilib Advanced 15.9.2

+	Code	End-member	Data	Phase	T	۷	Activity	Minimum	Maximum
+	21	Cr(Qa96)	FSstel	FSstel-FCC			3.1304E-02	3.1304E-02	3.1304E-02
+	22	Fe(Qa-4)	FSstel	FSstel-FCC			0.9381	0.9381	0.9381
+	23	CrC(Qa96)	FSstel	FSstel-FCC			7.1491E-02	7.1491E-02	7.1491E-02
+	24	FeC(Qa-4)	FSstel	FSstel-FCC			3.8211E-04	3.8211E-04	3.8211E-04

+	Code	End-member	Data	Phase	Τ	V	Activity	Minimum	Maximum
+	25	CrC3(Qb96)	FSstel	FSstel-BCC			4.3652E-24	4.3652E-24	4.3652E-24
+	26	Cr(Qb96)	FSstel	FSstel-BCC			0.1565	0.1565	0.1565
+	27	FeC3(Qb-4)	FSstel	FSstel-BCC			3.3041E-22	3.3041E-22	3.3041E-22
+	28	Fe(Qb-4)	FSstel	FSstel-BCC			0.9622	0.9622	0.9622

+	Code	End-member	Data	Phase	T	۷	Activity	Minimum	Maximum
+	29	Cr3C1(Qc96)	FSstel	FSstel-CEME			1.5822E-04	1.5822E-04	1.5822E-04
+	30	Fe3C1(Qc-4)	FSstel	FSstel-CEME			0.8533	0.8533	0.8533

In each phase, 96 moles of Qi are associated with each mole of Cr and (-4) moles of Qi are associated with each mole of Fe. Since the total amount of Qi = 0.0, this constrains the Cr/Fe ratio in every phase to be equal to 4/96

Output at paraequilibrium	0.04 Cr + 0.96 Fe + <a> C + 0 Qa +
at 700°C	0 Qb + 0 Qc =
	0.74794 mol BCC_A2 (41.664 gram, 0.74794 mol) (700 C, 1 atm, a=1.0000) (1.4400E-05 CrC3(Qb96) + 3.9986E-02 Cr(Qb96) + 3.4559E-04 FeC3(Qb-4) + 0.95965 Fe(Qb-4)) Site fraction of sublattice constituents: Cr 4.0000E-02 Stoichiometry = 1 Fe 0 96000
In each phase, (total Cr/total Fe) = 4/96	+ 0.25206 mol FCC_A1 (14.148 gram, 0.25206 mol) (700 C, 1 atm, a=1.0000) (3.8541E-02 Cr(Qa96) + 0.92499 Fe(Qa-4) + 1.4588E-03 CrC(Qa96) + 3.5010E-02 FeC(Qa-4))
	Site fraction of sublattice constituents: Cr 4.0000E-02 Stoichiometry = 1 Fe 0.96000
	+ 0 mol CEMENTITE (700 C, 1 atm, a=0.96293) (4.0000E-02 Cr3C1(Qc96) + 0.96000 Fe3C1(Qc-4))
	where "A" on the reactant side is 1.0000E-02

Equilib Advanced 15.9.4

Surface tension of a solution

- According to Butler (1), the surface of a solution may be considered as a separate phase consisting of a monolayer of atoms.
- For a solution with components M-N, Pajarre et al (2) proposed treating the surface phase as a solution M(Qa)-N(Qa) containing the virtual element Qa. (See also Kang (3) and Koukkari (4).)
- The Gibbs energy difference between M and M(Qa) is the molar surface energy $A_{(M)}\sigma_{(M)}$ (J/mol), where $A_{(M)}$ is the molar surface area (m²/mol) and $\sigma_{(M)}$ is the surface tension of pure M (N/m). $A_{(M)}$ can be calculated from lattice parameters, and $\sigma_{(M)}$ is determined experimentally.
- It can be shown (2) that the surface energy Aσ of the binary solution is equal to the chemical potential of Qa (where the molar surface area A of the solution is estimated as varying linearly with the surface mole fractions between the molar surface areas of pure M and N.)
- It may be noted that this situation is formally analogous to an equilibrium between a solution M-N and a very small amount of an oxide solution MO-NO.
- •
- The present example calculates the surface energy of a liquid Ag-Pb solution containing 30 mol% Pb at 1000 K.
- •
- (1) J.A.V. Butler, Proc. R. Soc. London A: Math. Phys. Eng. Sci., 135 (1932) 348.
- (2) R. Pajarre, P. Koukkari, T. Tanaka and J. Lee, Calphad, 30 (2006) 196.
- (3) Y.-B. Kang, Calphad, 50 (2015) 23-31.
- (4) P. Koukkari, VTT Bulletin 160 (2014) VTT Tech. Res. Ctr. of Finland, Espoo, Finland
- (5) T. Tanaka, K. Hack, T. Ida, S. Hara, Z. Metallkd., 87 (1996) 389-389.

$$g_{1000K}^{E(bulk)} = X_{Ag} X_{Pb} (6741.7 - 1464.8 X_{Ag} X_{Pb} - 1978 X_{Ag}^2 X_{Pb}^2) (4)$$

$$g_{1000K}^{E(surf)} = 0.83g^{E(bulk)}$$
(as proposed by Tapaka et al. (5) due to the effect of

(as proposed by Tanaka et al. (5) due to the effect of the reduced coordination number of surface atoms)

<u>Use the COMPOUND module</u> to enter the species Qa into the private VIRTBASE.cdb database with Gibbs energy = 0.0

File	Edit	Macro	Table	Units	Data Searc	:h Data	Evaluati	on Help					
D	2	+			T (K	.) P(atm) E	inergy(J)	Quantity(mo	ol) Vol(litr	re)			🦻 🕒 😼
	-3												
													1
ſ		Quanti	ty(mol)		Spe	cies		Phase		T(K)	P(total)**	Stream#	Data
	<a>	>			РЬ				Ŧ				
	+ <1-	A>		_	Ag				-				
	+ <u>n</u>	1001			Qa.		, 					1	
	10.0				199		1			1	1	1.	
•			- 11 -		()	- !		!			4 4		
A	A very small value of Qa is entered in order that the amount of												
th	the surface phase is very small. (As long as Qa is very small,												
th	e re	esult	will	be i	ndepe	ender	nt of	Qa.)					
					•			/					

File Units Parameters Help		
	T(K) P(atm) Energy(J)) Quantity(mol) Vol(litre)
- Reactants [3]	<a>Pb + <1-A> /	Ag + 0.0001 Qa
Products		
Compound species	Solution phases	
	* + Base-Phase	Full Name
gas 🖸 ideal 🔿 real 🛛 0	+ surf-bulk	bulksoln
aqueous U	+ surf-surf	surffsoln
t pure solide 1		
" + pure solids 1		
* - custom selection		
species: 1		
Target		
- none -	+-selected 2	Show 💌 all ု Selected
Estimate T(K): 1000		species: 4 Select
Quantity(mol): 0		solutions: 2
Final Conditions	T(()	
<a> 	P(atm)	Product H(J)
0.3	1000	
10 steps 🗖 Table		1 calculation
/		
Dulle phase to se		
Bulk phase to co	ontain 30 mol%	

Equilib Advanced 15.10.6

Equilib Advanced 15.10.7

Selection of an Industrial Grade Alloy

Several hundreds of standard alloys grade compositions were introduced in the new FactSage "Alloy Grades" Form. They presently consist in aluminum (wrought & cast), magnesium, copper (brass, bronze & casting) and titanium (α/β , α -near α , β) alloys compositions. Fe-based alloys will be introduced soon.

The user selected alloy grade composition can then be introduced as a multi-line mixture or as a single-line mixture in EQUILIB Reactants.

Click on "Edit | Select an Alloy Grade…" to open the "Alloy Grades" Form in "EQUILIB – Reactants"

4	Equilib	- Reactants								-		Х
File	e Edit	Run Macro Ta	able Units	Data Search	Dat	ta Evaluation	Help					
С	ונ	Add a new Reac	tant	Ctrl+F	<u>ا</u> ا	ergy(J) Quantity	(mol) Vol(li	tre)		111	🖳 📃	*
		Insert new react	ant before .									
		Delete reactant										
	_	Delete all blank	reactants									_
		Mixtures and Str	reams		>	Phase		T(C)	P(total)**	Stream	t Data	
		Re-order the rea	ctants		>		T			I		
		Export list of rea	ctants		>							
		Import list of rea	actants		>							
		Select an Alloy G	Grade									
	/ —	Clear										
		Example										
										Initial Con	ditions	
					r	Next >>						
Eac	:tSage 8 (4 Compound:	1/25 data	ahases So	lution:	0/22 databa	ses					

FactSage "Alloy Grades" Form.

Selection of Aluminum Alloy Series 1000-7000

Selection of Aluminum Alloy in the Series 1000-7000

GactSage[™]

Selection of Aluminum Alloy in the Series 1000-7000

存 Alloy Grades		- 0	×
Aluminum alloys	◄ 4000	▼ 4004	•
Alloy Composition (wt.	%) - (7 elements)-	Help	
wt.% Al	88.5 (bal.)		
wt.% Cu	0	Click in an element compo box for help.	
wt.% Fe	0.25		
wt.% Mg	1.5		
wt.% Mn	0		
wt.% Si	9.75		
wt.% Zn	0		
☞ save as a "Mixture"			
incluse elements with	0 wt.%		
FTlit	e		
✓ c	ж	X Cancel	1

Check "save as a "Mixture", if you want to create an input stream in EQUILIB with this alloy composition.

Otherwise, a multi-line input will be entered in EQUILIB.

Selection of Aluminum Alloy in the Series 1000-7000

Selection of Aluminum Alloy Series casting 100-800

Selection of Aluminum Alloy in the Series casting 100-800

Selection of Aluminum Alloy in the Series casting 100-800

FSAlloys 8.4 × FSalloys: Alloy familly: Aluminum alloys Alloy name: 201.0 1 Ag Wt% 0.7 2 Al Wt% 93.85		After click grade, with you get the	king "OK" to "save as "M information	accept the A lixture"" NOT about the all	A201.0 checke oy.	d,
3 Cu Wt% 4.5 4 Fe Wt% 0.1 5 Ma Wt% 0.25	4	Equilib - Reactants				
6 Mn Wt% 0.25 7 Si Wt% 0.05 8 Ti Wt% 0.25	<u>F</u> ile	Edit Run Macro Iable		M 🗣 🖷 🛛		
In Equilib the selected databases are FTIite		1.8				
(OK)	J	Quantity(g)	Species	Phase T	(C) P(total)**	Stream# Data
		+ 93.85	AI			1
		+ 4.5	Cu			1
		• 0.1	Fe			1
		• 0.25	Mg			1
		• 0.3	Mn			1
		• 0.05	Si			1
		• 0.25	Ti	<u>_</u>		1
Pinally, the multi-line based on a total defaul	mixtur t mass	e is entered of 100 gram	in EQUILIB s.	,	Г	Initial Conditions
			[0	Next >>		
	Fact	Sage 8.4 Compound: 1	/26 databases Solution	r. 1/22 databases		

Equilib Advanced 16.9

GactSage[™]

Min., Max and Average of Each Element

In this example, the AA4007 aluminum wrought alloy (UNS A94007; Aluminium 4007; Al4007) is selected.

The user may want to adjust the chromium content.

Min., max and average wt.% of a selected alloying element are displayed for information.

You can edit that composition (in wt.%) modifying the major element composition accordingly.

Min., Max and Average of Each Element

In this example, the AA4007 aluminum wrought alloy (UNS A94007; Aluminium 4007; Al4007) is selected.

The user may want to adjust the chromium content.

wt.% outside the min.max limits are marked with orange color, but the value you entered will still be taken even of outside those limits.

Min., Max and Average of Each Element

Creating an Input Stream in EQUILIB

In this example, the AA301.0 aluminum cast alloy (UNS A03010; Aluminium 301.0; Al301) is selected.

Check "save as a "Mixture"", if you want to create an input stream in EQUILIB with this alloy composition.

Otherwise, a multi-line input will be entered in EQUILIB.

Creating an Input Stream in EQUILIB

In this example, the AA301.0 aluminum cast alloy (UNS A03010; Aluminium 301.0; Al301) is selected.

Check "include elements with 0 wt.%", if you want to have alloying elements with 0 wt.% included in the MIXTURE or the multi-line input in EQUILIB.

This will generate a longer list of possible products including these elements in the COMPOUNDS and SOLUTIONS.

JactSage[™]

Selection of Copper Alloy Series

Selection of Copper Alloy in the Selected Series

Selection of Magnesium Alloy Series

Selection of Magnesium Alloy in the Selected Series

Equilib Advanced 16.18

www.factsage.com

Selection of Titanium Alloy Series

Selection of Titanium Alloy in the Selected Series

