

Department of Materials Science and Engineering

FactProSim

Installation Guide and Program Description June 2024

Nishant KUMAR

Marie-Aline VAN ENDE

In-Ho JUNG

Content

- Installation Guide
- Overview of the FactProSim package
- Description of the program
- Overview of the main window and commands in the toolbar
 - Step 1: Create and load a database file
 - Step 2: Build the Process Flowsheet
 - Step 3: Check the modules The Initializer
 - Step 4: Run the process flowsheet
 - Step 5: View the Results (Output Excel File)

FactProSim installation

FactProSim runs on any windows machine with minimal installation and is designed with a drag-and-drop approach to provide an intuitive and user-friendly interface

It is powered by accurate FactSage thermodynamic databases complex, multicomponent, multiphase chemical equilibria and their associated extensive property balances

To install FactProSim on your Windows computer,

- 1) Download the FactProSim add-on
- 2) This add-on contains FactProSim folder and ff32.dll, please extract the content and place both of them inside the FactSage folder

Overview of the FactProSim package

The FactProSim package contains 5 items:

- 1. The Application file *FactProSim.exe*: executable file to start the program
- 2. The Configuration file *FactProSim.exe.config*, which contains settings to run FactProSim.exe
- 3. The folder *lib*, which contains all the libraries necessary to run the program FactProSim.exe

▲ Do not rename, move or delete these files, this folder and its content! These 3 items are <u>required</u> for the program to run The folder *lib* AND the file *FactProSim.exe.config* MUST be located in the same folder as *FactProSim.exe*. If not, the program FactProSim won't run

Overview of the FactProSim package

The FactProSim package contains (continued):

4. The folder *Databases*: the folder holds 3 equilib files (*.equi) containing the phase selection to generate the database files (cst files) for the examples

This folder is not compulsory for the program FactProSim to run. It can be modified, moved or deleted by the user

Overview of the FactProSim package

The FactProSim package contains (continued):

Simulation Examples

🕂 New 🗸

Name

BOF simulation

BOF simulation 2

DeOx simulation

DeS simulation

5. The folder *Simulation Examples*: this folder co description, Excel input and results files and flow examples

С

to run. It can be modified, moved or deleted by the user

	FactProSim			×	+				
ns (continued):	\leftarrow \rightarrow	\uparrow	С	\Box	› ···	FactSage	83 >	FactProSir	m >
<i>mples</i> : this folder contains the results files and flowsheet of 4	🕂 New ~	*	O	Ō	<u>[]</u>)	Ŕ	Î	↑↓ Sort ~	
		2				P	PS	Ļ	
	Databases	lib	run	times	Simulati Example	on FactP es	roSim	FactProSim. exe.config	
\times +	-				L T			_	
♡	Searc	ch							
〕 (1) (2) (2) (3) (3) (4) (4) (5)	•								
Date modified Type	Size								
2024-05-29 3:06 PM File folder									
2024-05-29 3:20 PM File folder	←	-							
2024-05-29 3:46 PM File folder									

Description of the program

Overview of the main window and commands in the Toolbar

- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- Changing global and local units
- Manage Splitter and Equilib Process IDs
- Align the process modules in the flowsheet
- Save and load an existing flowsheet

Overview of the Main Window

FactProSim <Use the links in some of the shapes to navigate to the page in the document>

Commands in the Toolbar

Zoom and view controls

Zoom and view controls (continued)

General behavior in windows

		Input S	tream		×
Local Units Name FeTi Temperature (C) Check Sch	Excel Lindow Window (= Canc	ne 'X' button w ithout ap el button, rev	in the title bar to plying (saving) verts back to orig	close the the changes ginal)	
Amount (g) Check Sch Pressure (atm) Check Sch Components ADD Mass Percent Species 0.4 N		-3 C4 C5 V V2 V3 CN C2N C2N C2N	Monoxide#1	 ✓ Mg3N2_Solid-3(s3) ✓ Al_solid(s) ✓ AlN_solid(s) ✓ Si_solid(s) ✓ SiC_Solid_Alpha(s) ✓ N4Si3_Si3N4(s) ✓ P_Solid_(white)(s) ✓ S_alpha_orthorhombic_(s) ✓ MgS_solid(s) 	
0.2 C 0.006 S 0 Mg 4.5 Al 0.21 Si 0.01 P		Press O Press O If errors window, will not o	K to close the wi are found (invali the program will close	ndow and apply (sa d or missing entries display a message	a ve) the chang) in the module and the windov
Total/8. TOO		OK	Schedule		

General behavior in windows

		lı	nput Stream		x	
Local Units	Description	:				
	Excel Link Equation	Gas Phase Species	All 📃 Solution Phases	All 📃 Pure Solids	All 🔽	
Name FeTi Temperature (C) Check Sch			The Desc and this c	ription field is comment will	s used to make be shown on the	comments e flowshee
Pressure (atm) Check Sch Components ADD		C5 N N2 N3	Monox Fe-liq	Save Load Steps 45	Run	
Mass Percent Species 0.4 N 0.2 C 0.006 S 0 Mg		CN C2N CNN(g) CNN(g2) (CN)2 C4N2	▲ Moo Input S	lules	Unsaved*	100 %
4.5 Al Si O.01 P		0 02 03 03 00	Equ	lib Heat Ex		▶ 7 -
	- Cim	OK	Arra	nge Contractor n Align cal Horizontal	Input FeTi	

Working on flowsheets

Create a new flowsheet from the start (blank Diagram Workspace)

PPS		FactProSim	_ [] ×
New Save	Load Steps 1 Run	L	Units CST Stop About Help
Modules	Click the button 'N Diagram Workspa	lew' in the toolbar to clear the ce of all modules	
Input Stream	Stream Splitter		
Equilib			The program prompts to clear the current flowsheet
Arrange		New Flowsheet?	
÷	-0-0-	Clear the current flowsheet? Unsaved changes to the curren	Click Yes to clear or No to cancel and return to the t current flowsheet
Align Vertical	Align Horizontal	flowsheet will be lost	
		Yes No	

Working on flowsheets (continued)

Work on an existing flowsheet:

- Using the AutoSave flowsheet. This flowsheet is an automatically-saved copy of the flowsheet in the Diagram Workspace when the user exited the program properly during the last session. When starting the program, if an AutoSave file exists (i.e. user was working on flowsheet previously) the program prompts to restore the previous session, and if allowed then the AutoSave flowsheet is loaded to easily take up where the user left off. As the AutoSave file is also updated after main changes in the flowsheet, some unsaved work can be recovered in case of a sudden crash of the program
- Using an existing flowsheet saved in a file by the user. The saved flowsheet can be opened in the Diagram Workspace using the <u>Load command</u>

AutoSave does not replace the <u>Save command</u>. You should use The Save command to save the flowsheet at regular intervals and when You finish working on it

Description of the program

Overview of the main window and commands in the Toolbar

> Step 1: Create and load a database file

- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - > Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- ➢ Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- > Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- > Save and load an existing flowsheet

FactProSim utilizes 'transparent' ChemSage file (*.cst file), which is a thermochemical data file to store the thermodynamic properties of the phases to be included in the flowsheet. In other words, these cst files are a subset of the large commercial and private databases included in FactSage

These thermochemical data cst files can be created with the Equilib module of FactSage, either

- From an entered reactants list and phases selection
- From an existing *.equi file

From reactants and phase selection

😝 Equilib - Reactants	×	
File Edit Run Macro Table Units Data Search Data Evaluation Help		Carl Data Search - Equilib 8.3
T(C) P(atm) Energy(J) Quantity(g) V	'ol(litre) 👖 📑 🐺	Databases - 3/2/ compound databases, 2/24 solution databases
		Compounds only Private Databases
1.6		FactPS FScopp BINS solutions only CON2 CON4 CUTE FLovid FSload SGPS no database Coke FEL0 SGTEa
		FTsulf FSstel SGTE SGTEb STSC WATE
Quantity(g) Species Phase	T(C) P(total)** Stream# Data	□ FT salt □ FS upsi □ SG sold Clear All
1 Fe		FThall Other Add/Remove Data
+ 1 C		FTfrtz ELEM GGnobl
+ 1 Si		FThelg SpMCBN FTpulp FTlite TDmeph
+ 1 Ca0		FTdemo FTnucl Dnucl
+ 1 [Si02		-Information -
+ 1		
		2. Select the desired databases
1. Enter the desired re	a stants in the	(both commercial and private
T. Enter the desired re	eactants in the	
reactants window.		- Options - search for product s OalaDaSeS Can De Selected)
Note that the species	and the quantities	Default gaseous ions (plasmas) Organic species CxHy, X(max) = 2
Note that the species	and the quantities	imited data compounds (25C) ■ Imited data compounds (25C)
are not important. Ma	ke sure that all	Canad
desired elements are	listed	
FactSage 8.3 Compound: 3/27 databases Solution: 2/24 databases	11	

From reactants and phase selection

😝 Equilib - Menu: last system		- 🗆 X	
ile <u>U</u> nits <u>P</u> arameters <u>H</u> elp			
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	III 🖳 💽	1
Reactants (6)	(gram) Fe + C + Si + CaO + SiO2 + MnO		
Products	Orth Karacharan	Curters Calufana	
Compound species	Solution phases	O fixed activities Details	
□ nas ⊙ ideal C real _ 0	+ Elmiss-Fello Felio	0 ideal solutions	
aqueous 0	+ FToxid-SLAGA A-Slag-lig all oxides + S	Pseudonyms	2. Coloct the product compound encoir
pure liquids 0	FToxid-SLAGD D-Slag-lig with CO3	apply 🗖 🛛 Edit	3. Select the product compound specie
* + pure solids 46	FToxid-SLAG? ?-Slag-liq	└ Volume and physical prop data	(and pure liquide and pure colide) and
*	+ FToxid-SPINB B-Spinel	 assume molar volumes of solids and liquids = 0 	(gas, pure liquids and pure solids) and
species: 46	FToxid-SPINC C-Spinel	 use only molar volume data 	colution phases
	FToxid-SPIN? ?-Spinel	C use V & phys. property data	solution phases
-	I FToxid-MeO_A A-Monoxide 💌	🔲 paraequilibrium & Gmin 🛛 edit 🛛	Final conditions and calculations are
- hone -	Legend		
Environment T(K), 1000	I - Immiscible 1 Job onlow to dai to colocida	Total Species (max 7000) 89	not required
Estimate (K), proce	species: 43 Select	Total Solutions (max 200) 5	notrequired
Quantity(g): JU	solutions. 5	Total Phases (max 1500) 51	Make sure to select all the desired
Final Conditions		Equilibrium	where the last of the state of the state of the
<a> 	T(C) P(atm) Product H(J) (normal C normal + transitions	phases to be stored in the cst file
	1000 1	🗅 transitions only 🛛 O open	
10 steps 🗌 Table	1 calculation	- no time limit - Calculate >>	
			1
			-
actSage 8.3			ID.

From reactants and phase selection

😝 Equilib - Menu: last system	-	- 🗆 X
ile <u>U</u> nits <u>P</u> arameters <u>H</u> elp		
New	Ctrl+N	- 🚻 🖳 🕅
Open	Ctrl+O	,
Directories	Ctrl+D	
Save	Ctrl+S	
Save As		
Save Equilib Results File	Custom Sc	lutions Detaile
	0 fixed a	olutions
ChemApp file	>	
ChemSage File	> Help	
FSReactor File	> Export	as ASCII *.dat
1: File BOF_database comments / Fe + C + O + P + Mn +	Si Export	as transparent *.cst
- -	use v a	priys, property data
Exit	🗌 paraequ	librium & Gmin <u>edit</u>
- none - L-immiscible 1 V Show	v ⊙ all ⊖ selected	e (may 7000)
nce the product phase selec	ption is	ns (max 200) 5
nice the product phase seled		<u>s (max 1500)</u> 51
pleted, export the thermoch	emical data	
	(normal + transitions
he cst file using the menu Fil	e > sor	ly C open
mSage File > Export as tran	sparent *cst	Calculate >>
actSage 8.3		

÷ → ~ ↑ 🚞«	FactProSim > Databases	~ C	Search Databases	م
Organize 🔻 New folder			≡	- (
Name	Date modified	Туре	Size	
BOF_database.cst	2024-05-29 2:58 PM	CST File	25 KB	
DeOx_database.cst	2024-05-29 3:33 PM	CST File	59 KB	
DeS_database.cst	2024-05-29 3:50 PM	CST File	31 KB	
File name: DeS_data	base			
Save as type: ChemSag	e (*.cst)			

5. Choose the location and name for the cst file

From reactants and phase selection

From an existing equilib (*.equi) file

Directory Equilib (My Files) - D:\\Alalloy_casting.equi	– 🗆 X			
FileEditTools				
🖻 🔂 🐨 List sorted by Description - see 'Ed	ť			
- 1 files -				
Fil Date Description Ala loy_casting 02Dec21 comments / 90.3 Al + 7 Si + 0.5 Mg + 0.1 Fe	+ Cu + Zn + 0.1 Mn		My Files Directory	
			Drive 🖾 c:	
	Directory Equilib (My Files) - D:\\Alallo File Edit Tools	oy_casting.equi — 🗆 X		*.equi files
		cation and Precipitation\)	Solidification and Prev 211117_SNU-jmi A1_Step	
	Always Direct I/O to My Files dir	irectory	As_Step	
	Slide Show I - Regular Features Slide Show II - Advanced Featur	res	Diffusivity Papers	
	Fact Optimal Examples		Precipitation Softwar	
If the desired equilib file is r	not listod click on	the		

2021_Manas\Resources\

If the desired equilib file is not listed, click on the 'Change directory' icon and choose 'Change My Files Directory...'

The 'My Files Directory' dialog window opens. Browse the directories and select the desired folder where the *.equi file is located. Click 'OK'

From an existing equilib (*.equi) file

😝 Equilib - Menu: comn	nents				– 🗆 X
File Units Parameters	Help		11 🖳 💌		
[[(gram)	90.3 Al	+7 Si+ 0.5 M	g + 0.1 Fe + Cu + Zn	+ 0.1 Mn
Compound species		- Solution	phases		Custom Solutions
gas ideal C rea aqueous pure liquids * + pure solids * - custom selection species: Target - none - Estimate T(K): 1000 Quantitv(q): 0	al 0 0 98 98	Legend I - immiso + - selec	Base-Phase FTite-Liqu FTite-A1 FTite-A2 FTite-A3 FTite-A3 FTite-A4 FTite-A12 FTite-A13 FTite-A13 FTite-A13	Full Name Liquid FCC-A1 BCC-A2 HCP-A3 HCP-Zn Prototype-Mg DIAM-A4 Prototype-C CBCC-A12 Prototype-Mn CUB-A13 Prototype-Mn Show I all C selected species: 143 solutions: 23 Select	O fixed activities Details O fixed activities Details O ideal solutions Pseudonyms apply
Final Conditions		T(0	C) P(atm)	Product H(J)	Coarrisses inta 1300 121
10 steps 1 lab	le			/1 calculations	- no time limit - Calculate >>

To generate the *.cst file for FactProSim, go to the menu window of Equilib. In the 'File' menu, select 'ChemSage File', then 'Export as transparent *.cst'

🕽 Equilib - I	Menu: comments					_		×
le Units	Parameters Help							
New					Ctrl+N	1 11	ا 🚽	
Open					Ctrl+O			
Directori	ies				Ctrl+D	6		
Save					Ctrl+S			
Save As								
Save Equ	uilib Results File					tom Solutions	Deta	ils
ChemAp	op file				>	deal solution:	3	
ChemSa	ge File				>	Help		
FSReacto	or File				>	Export	as ASC	ll *.dat
1: File Al	alloy_casting comm	nents / 90.3 Al +	7 Si + 0.5 M	lg +		Export	as tran	sparent *.
2: File Cl	MASLNKMP CMASL	NKMP / CaO + I	MgO + Al20	03 + SiO2 + Li2		se V & phys.	property	data
3: File Cl	MASBNKRS comme	nts / CaO + SiO2	2 + AI2O3 +	MgO + Li20		araequilibrium	& Gmin	edit
4: File Py	/ProSim_Database -	comments / Fe +	+ Mn + Cr	+ Ca + S			70000	
5: File 02	1_FullDatabase_NEW	/ LF database / 8	1 Fe + AI +	C + C		Solutions (max	<u>7000</u> v 2001	241
F14						Phases (max	<u>x 200</u> 1500)	121
EXIT Final Condi	itiana				E quili	-		
		T(C)	P(atm)	✓ Product H(J)	▼ • norr	mal Cnorn	hal + trar	nsitions
		1000 300 10	1		C tran	sitions only	O ope	n
10 steps	s 🗖 Table		,	71 calcula	ations - no ti	me limit · C	alculate	• >>

😝 Save As							•
$\leftarrow \rightarrow \checkmark \uparrow $	Standard (D:) > Projects > Software-Packa	ges	ڻ ×		ackages	م	
Organize 🔻 New folder						?	1
Release	^ Name ^	Date modified	Туре	Size			1
📥 OneDrive - Personal	git	2/2/2024 6:13 PM	File folder				I
	.vs	2/2/2024 6:13 PM	File folder				I
This PC	CAHelper	2/2/2024 6:13 PM	File folder				I
💼 3D Objects	Homogenisation	2/2/2024 6:13 PM	File folder				I
📃 Desktop	packages	2/2/2024 6:13 PM	File folder				
🚆 Documents	Precipitation.CLI	2/2/2024 6:13 PM	File folder				
Downloads	Precipitation.Core	2/2/2024 6:13 PM	File folder				
Music	Resources	2/2/2024 6:13 PM	File folder				I
- Distance	Solidification Backend	2/2/2024 6:13 PM	File folder				
Pictures	Solidification.CLI	2/2/2024 6:13 PM	File folder				I
🚆 Videos	Solidification.Core	2/2/2024 6:13 PM	File folder				
🏪 Local Disk (C:)	Solidification.GUI	2/2/2024 6:13 PM	File folder				
👝 Standard (D:)							
👝 Rackup Plus (Fr)							
File name: Solidification.	.cst					~	
Save as type: ChemSage (*.	cst)					~	
			Lista	Cours -			
 Hide Folders 			Help	Save		<u> </u>	

From an existing equilib (*.equi) file

It will open a save dialog window, where the location and name of the cst file can be entered. Click "Save" A Because cst files have an expiration date, it is wise to save the original equilib file to be able to regenerate the cst file after the expiration date

Step 1: Load a database file

The first step in designing a flowsheet is to **select a database file** to have appropriate phases to select in the modules

Description of the program

- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- > Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- > Save and load an existing flowsheet

Step 2: Build the process flowsheet

Modules Panel

Choose one of the modules based on the intent:

- **Input Stream:** define starting materials for the simulation (mass, temperature, composition and phase selection)
- **Stream:** convey the equilibrated material information between units (phase selection)
- **Splitter:** split the incoming stream into two or more streams according to a specified split fraction or amount
- **Equilib:** perform equilibrium calculations with given reactant streams, selected products and final conditions (temperature, enthalpy, pressure)
- Heat Exchanger: perform heat exchange between two streams (no other reaction only heat exchange), with given conditions (Temperature or Enthalpy)

How to use: drag and drop one of the modules from the Modules Panel into the Diagram (flowsheet) Workspace

Description of the program

- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- > Save and load an existing flowsheet

Adding an Input Stream in the diagram

Stop About Help
k on the Input Stream icon, rkspace and drop it at the tream using the text box on the diagram, position the drag-and-drop it to the
t in the diagram to view and

Input Stream Module – Manual entry, 1 step

Input Stream Module – Manual entry, 1 step

FactProSim

The "Bal." keyword will automatically assign the remaining mass/mole to the corresponding element, and make the sum of the composition equal to "100"

Input Stream Module – Phase selection

	Input	Stream		x	
Local Units Description:					
Excel Link Equation Name FeTi Temperature (C) 25	Gas Phase Species C C C C C C C C C C C C C C C C C C C	All Solution Phases All BCC_A2 Slag-liq Phase Selection:	Pure Solids All C_Graphite(s) Mg_solid(s)		
Pressure (atm) 1 Components ADD Mass Percent Species 0.4 N 0.2 C 0.006 S 0 Mg 4.5 Al 0.21 Si 0.01 P Total%: 100	 C5 N N2 N3 CN C2N CNN(g) CNN(g2) (CN)2 C4N2 O O2 O3 CO Total Selection: 0	 The available phase the selected database components. They a gas species, solution Use the checkbox in select it. Multiple phate throughout more that throughout more that be selected M at least one species be selected Use the 'All' checkbox in a given category 	es are automatica se file, based on are organised inte n phases and put front of the spe- ases and specie an 1 category cies, solution or p ox to select all sp	ally populated fr the entered to 3 categories: ure solids cies or phase to es can be selected pure solids mus pecies or phase	rom ed st
	ОК	Schedule			

Input Stream Module – Manual entry, >1 step

	Local Units Description:						
	Excel Link Equation	Gas Phase Species All	Solution Phases All	InputStream Schedule	x		
New Save Load Steps 10 Jun Modules	Temperature (C) Check Sched Amount (g) Check Sched Pressure (atm) Check Sched	C C2 C3 C4 C5 N N2 N3	Slag-liq Spinel Monoxide#1 Monoxide#2 Fe-liq	Time Temperature Amount Press 1 1200 20 1 2 1200 20 1 3 1200 20 1 4 1200 20 1 5 1200 20 1 6 1200 20 1 7 1200 20 1			
Equilib Heat Exchanger	Then more than 1 step is defined in the Toolbar, fferent values can be used at each step A schedule is needed to enter these values he Schedule button becomes available at the ottom of the module A schedule button becomes available at the A schedule button becomes availe button becomes						
	0.01 P Total%: 100	CO Total Selection: 0 OK	Total Selection: D Schedule	<u>]</u> ок			
Description of the program

- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - > Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- > Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- > Save and load an existing flowsheet

Adding a Splitter and streams in the diagram

Connecting modules with arrows (Material flow)

Adding a Splitter and streams in the diagram

PPS	FactProSim	_ [] ×
New Save Load Steps 1 Run		Units CST Stop About Help
 Modules Input Stream Equilib Heat Ex Stream 	Unsaved*	 A splitter must have one (and only one) incoming stream (Input Stream or Stream) connected with an inbound arrow A splitter must have at least 1 outgoing stream (only Stream objects) connected with outbound arrows. There is no limit in the number of outgoing streams Splitters are identified by a unique Process ID integer (not a text label like streams) The Process ID is automatically assigned when such module is inserted in the Diagram. It can be modified by the user from the label on the splitter module
Version: 2.1.8909		

Splitter Module – Manual entry, 1 step

- The term Bal. indicates that the stream contains the remaining percentage or amount of incoming stream. If more than one outgoing stream is set as Bal., the remaining percentage or amount of incoming stream is shared equally among them
- The splitter is set initially with all outgoing streams as Bal. (incoming stream amount is equally shared among all outgoing streams)
- > To ensure mass balance conservation, at least one outgoing stream must be assigned as balance

Splitter Module – Manual entry, >1 step

		Splitter							er Schedule	x
						Time	Output 1	Output 2		
PPS	Description:	No Description				1	80	Bal.		
New Save Load Steps 10 Run				Amount (kg)			80	Bal.		
	Incoming Stream		 Amount (kg) 				80	Bal.		
 Modules 	Input	Bal? Value	Outgoing Strea	am Excel Link	Equatior	5	80	Bal.		
	Process ID 1	Check S	hedule Output 1			6	80	Bal.		
						7	80	Bal.		
Input Stream Splitter		Check So	hedule Output 2			8	80	Bal.		
						9	80	Bal.		
Equilib Heat Exchanger										
different values can A schedule is nee The Schedule buttor bottom of the module				E 	Enter each t colum strean	the de ime s n(s) c n(s) c	esired values tep in the tab of the outgoing hecked as Ba	for le The J II. are		
		ОК	Scho	edule			not ed A Ea he pro	itable ich er ogran	ntry must be fi n will assume	lled or Bal.

Splitter Module – Outgoing streams

		Stream				
PPS New Save Load Steps 1 Run	FactProSim	Unit	De	escription: No Description		
 Modules 	Unsaved*		Name Output 1		Units for Prin	ting
Input Stream Imput Stream Imput Stream Imput Stream Imput Stream Imput Stream Imput Stream Splitter Imput Stream Imput Stream Imput Stream Splitter Imput Stream Imput Stream Imput Stream Splitter Imput Stream Imput Stream Imput Stream Imput Stream Imput Stream Imput Stream Imput	▶ 100 %	Output 1	Gas Phase Species Ca Ca Ca Ca Ca Ca Ca Ca Si Si Si Si Si Si Si Si Ca	All Solution Phases	All Vere Solids Ca_Solid_Alpha(s) CaO_Lime(s) Si_Solid(s) CaSi2_hR18-R3m(s) CaSi2_hR18-R3m(s) CaSi2_oP12-Pnma(s) SiO2_Quartz(I)(s) SiO2_Cristobalite(h)(s4) SiO2_Cristobalite(h)(s4) CaSiO3_Wollastonite(c) CaSiO3_Wollastonite(c) Total Selection: 15	AII ✓ (a) (b) (c) (c) (c) (c) (c) (c) (c) (c
 There is nothing to streams connected The phase select composition are of stream and cannot 	to edit in the outgoing ed to a splitter ion, temperature and defined by the incoming of be modified			OK		

Description of the program

- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- > Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- > Save and load an existing flowsheet

Add Equilib module and reactant streams in the diagram

An Equilib module allows to perform an equilibrium reaction given the connected reactant stream(s) and equilibrium conditions set in the module

In the Modules Panel, click on the Equilib icon, drag it to the Diagram Workspace and drop it at the desired location

Depending on the desired reaction, drag-and-drop additional Input Stream(s) (reactant) and Streams (reaction products). Enter a unique name for each stream

Add Equilib module and reactant streams in the diagram

- An Equilib must have at least one incoming stream (Input Stream or Stream) connected with an inbound arrow. There is no limit in the number of incoming streams
- > There are no restrictions in the number of outgoing streams (only Stream objects)
- > Equilib is identified by a unique Process ID integer (not a text label like streams)
- The Process ID is automatically assigned when such module is inserted in the Diagram. It can be modified by the user from the label on the Equilib module

Equilib Module – Manual entry, 1 step

Equilib Module – Manual entry, 1 step

Phase Selection:

- The available phases are automatically populated from the selected database file, based on the incoming streams. They are organised into 3 categories: gas species, solution phases and pure solids
- Use the checkbox in front of the species or phase to select it. Multiple phases and species can be selected throughout more than 1 category
- A at least one species, solution or pure solids must be selected
- Use the 'All' checkbox to select all species or phases in a given category

		Equilib		x
escription:	No Description			
Equation	Gas Phase Species	All Solution Phases	All Pure Solids All All Pure Solids Image: Solid(s) Si_solid(s) Si_solid(s) Image: Solid_Alpha(s) Ca_Solid_Alpha(s) CaSi2_hR18-R3m(s) Image: Solid_Solid_Alpha(s) Ca2Si_oP12-Pnma(s) Image: Solid_	
reams	 ✓ Si ✓ Si2 ✓ Si3 ✓ Si0 ✓ Si02 ✓ Ca ✓ Ca2 		□ SiO2_Quartz(l)(s) □ SiO2_Tridymite(h)(s4) □ SiO2_Cristobalite(h)(s6) ✓ CaO_Lime(s) □ CaSiO3_Wollastonite(s) □ Ca2SiO4_Gamma(olivine(s) □ Ca2SiO4_Alpha-prime(s2)	•
	Total Selection: 14	Total Selection: 1	Total Selection: 1	
	ОК	Schedule		

Equilib Module – Manual entry, >1 step

	-	ib Scheuul	8	x
Equilib	ime Temperatu	re Enthalpy	Pressure	
Local Units Description: No Description 1	1500		1	
New Save Load Steps 10 Run	1500		1	
Excel Link Equation Gas Phase species All Solution Phases All Pure so 3	1500		1	_
	1500		1	_
Enthalpy (J) Check Schedu	1500		1	_
→ → Pressure (atm) Check Schedu ○ ○ 0 ✓ Mg □ Monoxide#2 □ CaS	1500		1	-
Input Stream Stream Splitter Process ID 2	1500		1	
	1500		1	
Incoming Streams Outgoing Streams	0 1500		1	
Products 1 Products 1 Si3	•	•		
Equilib Heat Exchange				
I ⊂ SiO2				
				1
When more than 1 step is defined in the toolbar.	er the des	sired va	alues	for
different volues can be used at each stop	timo ct	on in th	o tobl	<u> </u>
different values can be used at each step			elau	e
A schedule is needed to enter these values K Schedule	Specify c	only 2 c	onditi	ons
The Schedule button becomes available at the	ach line	one co	nditio	n
		1		
bottom of the module must	t be emp	ty		

Equilib Module – Outgoing streams (reaction products)

PPS	FactProSim	_ [] ×
New Save Load Steps 1 Run		Units CST Stop About Help
New Save Load Steps 1 Run Modules Input Stream Input Stream The outgoing calculations Equilib The phase se exclusively is by the presese streams con some or all to module to an output to an	Unsaved* Too % g streams do not affect the Equilib election of the reaction products is defined in the Equilib module, and is not affected ence and phase selection in the outgoing nected to the Equilib module of the outgoing streams is only to transfer he equilibrated material from the Equilib nother unit	Units CST Sign About Help
Version: 2.1.8909		

Equilib Module – Outgoing streams (reaction products)

Equilib Module – Outgoing streams (reaction products)

	11 x			
			Stream X	
		Description: No De	scription	
 The outgoing streading are linked: once adding solution phase or another outgoing It is not necessary made in the upstreade in the up	Products 1	Name Products 1	Stream	x
		➡ Gas Phase Species All 🖌	Description: No Description	
	2	✓ 0 ✓ 02 ✓ 02	Name Products 2	Units for Printing
		I Mg	Gas Phase Species All Solution Phases All Pure Solids	All
		✓ Mg2 ✓ Mg0	0 Slag-liq CaO_Lim	ne(s)
	The outgoing streams connected to are linked: once a species, solution is selected in one outgoing stream, t	the same Equilib phase or pure solid the same species,	Mg Mg2 Mg0 Si Si2	
	another outgoing stream		Total Selection: 0 These phases cannot be selected this stream since they are alread	ed in
>	It is not necessary to match the entire made in the upstream Equilib. Howe	e phase selection ver, the unselected	selected in the other connected	stream
	phases cannot be transferred to ano	ther module and		

will not be printed in the output Excel sheet

Description of the program

- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- ➤ Transferring material to the next step
- > Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- > Save and load an existing flowsheet

Add Heat Exchanger and reactant streams in the diagram

A Heat Exchanger allows to perform heat exchange between two reactant stream(s) and conditions set inside the module

➤ In the Modules Panel, click on the Heat Exchanger icon, drag it to the Diagram Workspace and drop it at the desired location

Depending on the desired reaction, drag-and-drop additional Input Stream(s) (reactant) and Streams (reaction products). Enter a unique name for each stream

Add Heat Exchanger and reactant streams in the diagram

- A Heat Exchanger must have two incoming stream (Input Stream or Stream) connected with an inbound arrow. Only two streams are allowed for inbound material flow
- > There are no restrictions in the number of outgoing streams (only Stream objects)
- > Heat Exchanger is identified by a unique Process ID integer (not a text label like streams)
- The Process ID is automatically assigned when such module is inserted in the Diagram. It can be modified by the user from the label on the Heat Exchanger module

Heat Exchanger Module – Manual entry, 1 step

			Heat Exchanger		X
		Description:	No Description		
	Incoming Streams	Outgoing Streams	 Tomporatura difference / 	0)	Excel Link Equation
PPS	Input 2	Products 1	 Temperature difference (Temperature Change (C) 	 Input 2 Output 1 	
New Save Load Steps 1 But Modules		Products 1	 Enthalpy Change (J) 	 Input 2 Output 1 	
Input Stream Stream Splitter	Output 1				
<u>→</u> ↔			Skip if No Reactants		
Equilib Heat Exchanger	Summa	ry of incoming	Choos reactio	e this option w n forward eve	/hen you war n when incor
	and out	going streams	contair <u>A</u> Thi realizir	i anything s is dangerous ig the effect of	s and should f it

Heat Exchanger Module – Manual entry, 1 step

			Heat Exchanger				
		Description:	n: No Description				
	Incoming Streams	Outgoing Streams			Excel Link Equation		
		Products 1	 Temperature difference (C) 				
-		Products 2	 Temperature Change (C) 				
299	Input 2			Output 2			
New Save Load Steps 1 Run			 Enthalpy Change (J) 				
 Modules 				Input 2			
		Products 1		Output 1			
Modules		Products 1		Output 2 Output 1			

Define the final conditions of the equilibrium calculation

You can select one of the 3 conditions:

Final Temperature Difference between streams, it will raise the temperature of the colder stream and lower the temperature of the hotter stream to achieve the temperature difference, only +value accepted here

Temperature change of one stream, after selecting this option, you have to select the stream whose temperature you want to change, +value means increase, -value means decrease

Enthalpy change of one stream, after selecting this option, you have to select the stream whose enthalpy you want to change, +value means increase, -value means decrease

Heat Exchanger Module – Manual entry, >1 step

			Heat Exchanger		x		Heat Exchanger Schedule					
PPS		Description: No	Description			Time	Temperature Difference	Temperature Change	Enthalpy Change			
New Save Load Steps 10 Ru Modules Modules Input Stream Stream Splitter Equilib Heat Exchangei	Incoming Streams Outg	tgoing Streams Products 1 Products 2	Temperature difference Temperature Change Enthalpy Change (J)	e (C) Check Schedule C) Check Schedule Input 2 Output 1 Check Schedule Input 2 Output 1	Excel Link Equation	1 2 3 4 5 6 7 8 9 10	10 10 10 10 10 10 10 10 10 10 10					
When more than 1 st	ep is defined	ок ed in the tool]→		Enter the one of the o	desired valu step in the	ies for table					
A schedule is nee The Schedule button	ies the					UK						

	PPS	FactProSim	_ 0 3	x						
	New Save Load Steps 1 Run		Units CST Stop About Hel	Р						
	 Modules 	Unsaved*								
		▶ _ 100 %	Products 1							
File phase selection of the reaction products is affected by the presence and phase selection in the outgoing streams connected o the Heat Exchanger module The Phases selected inside the outgoing streams become part of he Equilibrium, which is explained in further slides The outgoing streams also transfer some or all the equilibrated naterial from the Heat Exchanger module to another unit										
				-						
	Version: 2.1.8909									

Heat Exchanger– Outgoing streams (reaction products) <u>Change the local units</u> when printing the content of this

	Heat Exchanger X				when printing the content of				this			
	Description:	No Description			Products 1			stream in	n its Ex	kcel workshee	et	
Incoming Streams	Outgoing Streams			Excel Link Equation	→ 🕒 —							
	Products 1	\odot Temperature difference (C)	10					Stream				x
Input 2	Products 2	○ Temperature Change (C)	 Input 2 Output 1 		Products 2	Descr	iption: No De	scription				
	Z Products 1	 Enthalpy Change (J) 	 Input 2 Output 1 			Name Products 1				Units for Pri	nting	
Output 1	Products 2					Gas Phase Species	All 🗌 S	Solution Phases		Pure Solids	All [
						0		BCC_A2		Mg_solid(s)	l.	
		Skip if No Reactants						Slag-liq		Si_solid(s)		
× -								Monoxide#1		Ca_Solid_Alpha(s)		
I he a	vailable pr	nases are aut	omatically	populate	ed from th	e selected dat	tabase	Fe-lia		Ca2Si oP12-Pnma(s)	,	
file, b	ased on th	e component	s from its o	correspo	nding Inc	oming stream				MgO_periclase(s)		
	the nhase	s inside the "I	Products 1	" outaoir	og stream	is nonulated l	hased			SiO2_Quartz(I)(s)	L	
	ine phases			outgon	ig silean	is populated i	Jaseu			SiO2_Tridymite(h)(s4)	
on the	e compone	ents from "Ou	tput 1"							SiO2_Cristobalite(h)	s6)	
To assign Outgoing Stream to an incoming stream just click on the					al Selection: 0		CaO_Lime(s)	<u></u> E	•			
corres	sponding c	heckbox						a selection. 0		rotal Selection. U		
Once a outgoing stream is assigned to an incoming stream it becomes						ок						

- Once a outgoing stream is assigned to an incoming stream it becomes unavailable to the other stream and greyed out
- More than one outgoing stream can be assigned to incoming streams FactProSim

	Description	Heat Exchanger		X Products 1			when prin stream in	nting the content its Excel worksh	of this neet
Incoming Streams	Outgoing Streams	Temperature difference (C	Excel Link Equa	ion			Stream		x
Input 2	Products 2	 Temperature Change (C) Enthalpy Change (J) 	 Input 2 Output 1 Input 2 Output 1 	Products 2	Name Prod	Description: N	o Description	Units fo	or Printing
Output 1	Products 2	Skip if No Reactants			Gas Phase Spe	cies All	 Solution Phases BCC_A2 Slag-liq Monoxide#1 	All Pure Solids	
 Use the Multiput function of the second secon	he checkb ble phases 1 category 1 least 1 sp he 'All' che	ox in front of and species ecies, solution eckbox to sel	the species or ph can be selected t on or pure solid m ect all species or p	ase to sele hroughout ust be sele phases in a	ct it. more cted given		Monoxide#2	CaSi2_hR18-R3n Ca2Si_oP12-Pnn Mg0_periclase(s SiO2_Quartz(I)(s SiO2_Tridymite(I SiO2_Cristobalit CaO_Lime(s)	m(s) ma(s) s) (h)(s4) te(h)(s6)
categ	ory					0	Total Selection: ()	Total Selection: ()	

Inc

part of the equilibrium condition

				_ [] ×				Stream	1		x	
	Description:		Units CST Stor	About Help		Desc	cription: No D	escription				
oming Streams Out	utgoing Streams				Name Pr	roducts 3				Units for Printing		
⊻ I	Products 1 Products 2 Products 3	Products 3			Gas Phase S	Species	All 🔽	Solution Phases	All 🗖 Pure Solids	A)
put 2			Products 1		✓ C ✓ C	- 1		Description:	lo Description			
		2			✓ C3 ✓ C4 ✓ C5		Name Pr	oducts 1			Units for	r Printing
		→ 🔶 -	Products 2				Gas Phase S	pecies All	Solution Phases BCC_A2	Ali 🗹 F	Pure Solids	All
The out	aoina strean	ns connected	to the sam	ne	Selection	ion: 6	C C2		Fe-liq			
Incomin	g streams ai	re linked: once	e a specie	s, solutio	n		C4					
phase o	or pure solid i	is selected in a	one outgo	ing strea	m,							
be selec	cted in anoth	er outgoing st	ream	Jilu cann	UI			These p	hases canno	ot be se	lected in	
							Total Selection	this stre	am since the	y are a	Iready	
It is not	necessary to	o match the er	ntire phase	e selectio	on			selected	l in the other	connec	cted strea	am 🛛
available	e. However,	the unselecte	d phases	will not b	e							

			_ [] X				Str	ream			x	
	Description:	Units	Stop About Help		Des	scription: N	o Description					
Incoming Streams	Outgoing Streams			Nam	ne Products 3				U	nits for Printing		
	Products 1 Products 2	Products 3		Gas Pl	hase Species	All	Solution Phases	: All	Pure Solids	All		
Input 2	✓ Products 3		_	√ Fe √ C	e				Stream			x
		Produ	ucts 1	✓ C2 ✓ C3	2 3		Descriptio	on: No Descript	ion			
			<u>+</u>	✓ C4	4 5	Name	Products 1				Units for P	rinting
		→ 🔶				Gas Phas	e Species	All 🔄 Solutio	on Phases	All 🔽 Pure	Solids	All
Phase Se	election:	Drade	usta al			E Fe		Bi	CC_A2 <mark>≻liq</mark>		2_Graphite(s)	
The fin	nal Equilibrium s	state of the incomin	ng stream is		on: 6	C2						
defined	d by the phases	selected inside its	s linked outg	oing	3	C4			\mathbf{i}			
stream	าร											
The ec	quilibrium calcul	ation of the incom	ing stream w	/ill			These	phase	s canno	t be sele	cted in	
add all	the phases in a	all the outgoing str	eam and			Total Sele	ectio this st	ream si	ince the	y are alr	eady	
	brate them	and Eo lig from "Pr	oducte 1" or	d			select	ed in th	e other	connect	ed strear	n
FCC 4	1 from "Produc	ts 3" will all he ad	ded for	iu –	l							
equilib	rium calculation	of "Input 2"										

LACILIONIU

Description of the program

- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- > Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- Save and load an existing flowsheet

Using Excel links – single field

Some fields can be connected to cells in an Excel worksheet using the Excel Link option

> To activate the link for a given field, click the toggle button next to the field

> A browse window opens. Locate and select the Excel file on your computer and click

🖭 Open							×
← → * ↑	Simulation Exa > D	eOx Simulation	~	ē	,	h DeOx Simul	ation
Organize 🔻 New	folder						
Name	^	Date modified		Туре		Size	
DeOx_data_new.xl	lsx	01-07-2021 16:21		Microso	ft Excel W	10 KE	3
💶 Output.xlsx		30-09-2022 10:55		Microso	ft Excel W	129 KE	3
F	File name:			~	Excel Files ((*.xlsx,*.xls)	~
					Open	0	Cancel
						6	

Note that, in the same module,
 Excel links can be used for some
 fields, while manual entry or Equation
 can be used in other fields

Open

Using Excel links – single field (continued)

Name of the current Workbook (Excel file)

WorkBook: D:\	Projects\PyProSi	im\Project Plan and Pr	esentation\LF_2023\LF_2023_Cl	nemApp_C)ofa::co.xls	x					
Sheet: Materials											
nitial steel			Composition (wt%)								
	total amount, g	temperature (°C)	Fe	Al	С	Ca	Cr	Cu	Ν		
	165000000	1600	99.7480	0.0010	0.0400	0.0000	0.0000	0.0000	0		
nitial slag			Composition (wt%)						+		
	total amount, g	temperature (°C)	AI2O3	CaO	Cr2O3	MgO	MnO	P2O5	s		
	4950000	1600	32	51.5	0	8	0.8	0.1	5		
			AI2O3	CaO	Cr2O3	MgO	MnO	P2O5	s		
		Normalized with CaS:	31.93	51.38	0.00	7.98	0.80	0.10	5		
nitial inclusions			Composition (wt%)						+		
	fraction (ppm)		AI2O3	CaO	MgO	SiO2	TiO2	MnO	t		
	1		100						1		
Slag formers			Composition (normalized, wt%)						+		
	Code	Туре	CaO	AI2O3	SiO2	FeO	MnO	MgO	Т		
	Lim	Lime	93.3	1	2.4	0.3	0	2.9	0		
	None	-	NA	NA	NA	NA	NA	NA	Ν		
	None	-	NA	NA	NA	NA	NA	NA	Ν		
	None	-	NA	NA	NA	NA	NA	NA	Ν		
	None	-	NA	NA	NA	NA	NA	NA	N		

Navigate the worksheets in the selected Excel file, the name of the current sheet is also shown besides it

- An Excel window opens with the content of each worksheet in the selected Excel file (without formulas and formatting) in a table format
- Click in the desired cell to indicate which cell address to take the value from
- At the right-hand corner of the window, select the checkbox to indicate whether the cell address is fixed. If checked, the same cell address will be used even with multiple step simulation. If unchecked, the cell row will be incremented at each step
- Empty cells and cells containing text instead of numbers are converted to 0

Using Excel links – single field (continued)

Local Units	Description:
	Excel Link Equation
Name	Input
Temperature (C)	Check Sched 🕕 🔵
Amount (kg)	Check Sched 🕕 🔵
Pressure (atm)	Check Sched
Components Mass Percent	ADD Species
95	Fe
4	С
0.5	Mn
0.5	Si

Total%: 100

- When the value from the Excel cell is successfully read, the value is entered in the field and becomes non-editable. The toggle button is on (dark background)
- When the Excel Link is on, the value of the field will be updated with the value stored at the cell address in the Excel file every time the module is opened and at each call of that module during run
- If the cell in the Excel file contains a formula, the latter is always reevaluated and the field is updated with the re-evaluated value
- The program keeps the original cell address: if the user inserts or deletes columns/rows, or moves the cell in the Excel file, the program will not consider these changes. If cell address changes are made in the Excel file, the Excel link must be removed and created again
- To remove the Excel Link, click again on the toggle button (light grey background). The field becomes editable

Using Excel links – fixed vs. variable cell address

	Excel Window X									x	X Excel Window											
WorkBoo	ok: D:\Projects	s\PyProSim	\Project Plan ar	nd Presenta	ition\BOF 202	4\Data_BOI	F_Simulat	tion.xlsx				WorkBoo	k: D:\Projec	ts\PyProSim	Project Plan ar	nd Presenta	ition\BOF 202	24\Data_B	OF_Simul	ation.xlsx		
Sheet:	Sheet1							 [🗹 Take Va	lue from only	one cell	Sheet: Sheet1							Г	🗌 Take Va	lue from on	
Scrap	100					25					<u> </u>	Scrap	100					25				
							1	Inputs	Stream Sch	edule	x									InputStre	am Sche	edule
Time (mi	a) 02 (km)	(-0 /km)	Kinetic factors	Gar (P %)	Slag (C %)	Scrap /kg	Time	Tempera	ature Amount	Pressure					Kinetic factors				Time	Temperature	Amount	Pressure
1	0.57	0.25	10	50	50	2	1	1300	0.25	1		Time (min	0 57	CaO (kg)	Metal (A,%) 10	Gas (B,%)	Slag (C,%)	Scrap (k	1	1300	0.25	1
2	0.57	0.25	10	50	50	2	2	1300	0.25	1		2	0.57	0.25	10	50	50			1300	0.25	1
3	0.57	0.05	140	1.50	1.00		3	1300	0.25	1		3	0.57	0.25	The	cell :	addre	220	ŀ	1300	0.25	1
4	0.57		ne valu	ue is	take	n 🗄	4	1300	0.25	1		4	0.57	0.25			Juanc	,00	.	1300	0.25	1
5	0.57	0.	the state of the s			-	5	1300	0.25	1		5	0.57	0.25	shifts	s dov	<i>w</i> n at	eac	h 占	1300	0.25	1
7	0.57	🕂 Tro	om the	e sar	ne	Н	6	1300	0.25	1		6	0.57	0.25		(410-0				1300	0.25	1
8	0.57		a te Il	ach	eton	H	7	1300	0.25	1		8	0.57	0.25	step	(the	COIUI	mn i	S -	1300	0	1
9	0.57	0, 00		acri	Siep		8	1300	0.25	1		9	0.57	0.25	road	star	tina f	rom	-	1300	0	1
10	0.57	0.25	30	80	80	0	9	1300	0.25	1		10	0.57	0.25	Teau	Star	ungi		-	1300	0	1
12	0.57	0	30	80	80	0	10	1300	0.25	1		11	0.57	0	the s	peci	fied of	cell)	-	1300	0	1
13	0.57	0	30	80	80	0						12	0.57	0	20		100			1500	<u> </u>	L'
14	0.57	0	30	80	80	0						13	0.57	0	30	80	80	0				
15	0.57	0	30	80	80	0						15	0.57	0	30	80	80	0				
											-		1					· · ·				
												•										
				≻ W	hen i	using	g m	ultipl	le step	s, the	e sar	ne ce	ll in t	he E>	cel fil	e ca	n be	use	d at			
				ea	ach s	tep (fixe	d ce	ll addr	ess),	, or tl	ne cel	ll add	lress	can b	e sh	ifted	at e	ach			
				st	ep (v	ariat	ole d	cell a	addres	s)											ок	
						is s	tro	nalv	recon	nmer	heh	to o	nen	the	sched	lule	wind		aft	≏r		
					7 10			'9'y				10 0	PCI	the		·	WITIG		and			
	F -		- O' -	creating the Excel links to check that the values are read correctly													C 0					

FactProSim

one cell

Using Excel links – Entering components (Input Stream)

Local Units		De	scription:
		Excel Link	Equation
Name	Input		
Temperature (C)	Check Sched	0	
Amount (kg)	Check Sched		
Pressure (atm)	Check Sched		
Pressure (atm)	Check Sched		
Pressure (atm) Components Mass Percent	ADD Species		
Pressure (atm) Components Mass Percent 95	ADD Species Fe		
Pressure (atm) Components Mass Percent 95 4	ADD Species Fe C		
Pressure (atm) Components Mass Percent 95 4 0.5	Check Sched Species Fe C Mn		

					Excel Wi	ndow					2				
WorkBoo	ok: D:\Project	ts\PyProSim	Project Plan an	nd Present	tation\BOF 2024	4∖Data_BOF	_Simulatio	n.xlsx							
Sheet:	Sheet1								🗸 Take	e Value from	only one cell				
	Comp. (wt%	6)			Amount (kg)	Temp. (C)					-				
Metal	Fe	С	Mn	Si											
	95	4	0.5	0.5	100	1300									
										Si	28.0855				
Slag	CaO	FeO	SiO2							SiO2	60.08				
	55	25	20		2	1300		2.75							
Gas	02			Afte	er selec	ting a	nd op	penin	g the	Excel					
	100			file.	select	the ar	oup (of cel	Is cor	ntainin					
Elun		_		tho.	compoi	nents	cher	nical	form	ila and	503				
Scrap	100				compo		CHCI	mear			154				
Scrap	100			thei	r compo	osition	า								
				\wedge	Compo	nents	mus	st be a	arrand	bed					
			Kinetic factors							J OG					
Time (mir	n) O2 (kg)	CaO (kg)	Metal (A,%)	eith	er all in	a rov	v or a	all in a	a colu	mn.					
1	0.57	0.25	10	The	ir corre	snon	dina (comp	ositio	n mus	t 🖳				
2	0.57	0.25	10			opoin		Joinp							
direc	tlv –	0.25	10	be l	ocated	on th	e adj	acen	t cell k	below					
b tt.					(for row arrangement) or baside (for										
Dulla		10.25	110												
v or	-			column arrangement)											
ether	-			Ţ	Compo	nents	mus	st be	entere	ed					
				with	chemi	cal fo	rmula	aonly	,						

Using Excel links – Entering components (Input Stream)

Using Excel links – Changing the Excel file(s)

Using Excel links – Reviewing the selection

			Excel Window												x	
			WorkBoo	k: D:\Projects	s\PyProSim	Project Plan ar	nd Presenta	tion\BOF 202	4\Data_BOF	_Simulatio	n.xlsx					
Local Units		Description:	Sheet:	Sheet1	veet1							🗸 Take V	Value from o	only one ce	ell	
	Exce	el Link Equation	Scrap	100					25							
Name	Input														-	
T						Kinetic factors	;			dH (kJ)	0					
Temperature (C) Check Sched 🕧		Time (min) O2 (kg)	CaO (kg)	Metal (A,%)	Gas (B,%)	Slag (C,%)	Scrap (kg)							
Amount (ka)	Check Sched		2	0.57	0.25	10	50	50	2						-	
			3	0.57	0.25	10	50	50	2							
Pressure (atm)	Check Sched		4	0.57	0.25	10	50	50	2							
			5	0.57	0.25	10	50	50	2						-	
Componente			6	0.57	0.25	30	80	80	2						-	
components	ADD		8	0.57	0.25	30	80	80	2						-	
Mass Percent	Species		9	0.57	0.25	30	80	80	2							
95	Fe		10	0.57	0.25	30	80	80	0							
4	C		11	0.57	0	30	80	80	0						-	
4	C		12	0.57	0	30	80	80	0						-	
0.5	Mn		14	0.57		50	00	00	0						- 11	
0.5	Si		15	0.57	> Δfte	r con	nect	ina ta			the "	' <i>i</i> ' ont	tion v	will k	he	come active
							neou	ing it		J CI,						
				>	This	s optio	on w	ill sho	ow tł	ne so	elec	tion n	nade	e dur	rin	a connection and
					££		:۲:									9
					IUR	nerm	oaiii	callo	n cai	1 De	ma		nece	ssa	ſУ	
				>	$\rightarrow \Lambda$	The r	oroar	am k	eens	s the	oric	ninal (cella	addr	69	ss: if the user inserts or
Total%: 100						ine p			oope							
					del	etes c	olun	nns/ro	DWS,	or n	nove	es the	e cell	in th	he	Excel file, the program
						note		Jor th	000	aha				ddra		a abangaa ara mada in
				_	WIII	HOL CO	JUSIC		ese	cha	nges	5. II C		Jule	355	s changes are made in
E	actProS	Excel	l file,	the E	Exce	l linł	k mu	ist be	rem	love	d	and created again				
- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

Using Equations in the modules

- Transferring material to the next step
- Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- > Save and load an existing flowsheet

Using Equation

Local Units Name Temperature (C	De: Excel Link Input C) Check Sched	scription: Equatior	Input S No Description Gas Phase Species A Si Si Si2	 Some fields can option To activate the lin field An Equation Buil 	be conne nk for a gi der windo	cted to an Equation using t ven field, click the toggle b	he Equation utton next to the
Amount (kg) Pressure (atm) Components Mass Percent 95 4 0.5 0.5	Check Sched Check Sched Species Fe C Mn Si		C C2 C3 C4 C5 SiC SiC2 Si2C Mn Fe	Equation	☐ Mn5Si3_ ☐ FeSi2_ <f ☐ Fe3Si_so</f 	Equation Builder Sample fuction (Fn) = 3*2 + 5*[var1] - ([var2] + 7*[var3]) Fn = 3*2 Name Excel Stream	X +VAR -VAR AUTO Help
Total%: 100		P N Equ while used	Note that, in the s ations can be use a manual entry of d in other fields	ame module, ed for some fields, r Excel link can be	Total Selectio	ОК	
F	actProSim						74

Using Equation

Equation Area: Write your equation here		
Equation Builder	x	
Sample fuction (Fn) = 3*2 + 5*[var1] - ([var2] + 7*[var3])		
Fn = 3*2 + [a] + [var2] + [metal]	+ VAR - VAR AUTO Help	
Name Excel Stream	≻+	VAR will add a single variable to the Variable Area
	>-\	/AR will remove the selected variable from the
var2 var2	V	ariable Area
metal v		
	E Contraction of the second se	These two options will only generate variables
	W	with generic name, user need to rewrite the name
Variable Area: All the variables will be	e shown	UTO will read the equation in the <i>Equation Area</i>
here, which then can be defined	id	lentifies the written variables in the equation and
	th	nen populate the Variable Area with corresponding
	Va	ariables
	≻H	elp will open this user manual
ОК		

Using Equation: Equation Text

Equation Builder	x
Sample fuction (Fn) = 3*2 + 5*[var1] - ([var2] + 7*[var3])	
Fn = 3*2 + [a] + [var2] + [metal]	+ VAR - VAR AUTO Help
Name Excel Stream	
	 > Here a multivariate equation can be written for the FactProSim to evaluate > Equation can be written in the form similar to Excel > There are no limits to the length of the equation and the number of variables used > The variable can be named anything as long as they are written inside square brackets [] > A The variable must be written inside [], anything outside is considered illegal and a warning will be generated
ОК	

Equ	uation Builder x	
Sample fuction (Fn) = 3*2 + 5*[var1] - ([var2] + 7*[var3])	
Fn = 3*2 + [a] + [var2] + [metal]	+ VAR - VAR AUTO Help	
Name Excel Stream		
a v Stream: Gas out Input Stream: Gas in Input Stream: Metal Fuel in The stream of the	 A list of all the Input Streams and currently part of the process mode after clicking on the drop down means of its connection to current module. Select the desired stream from the stream from the	Streams el will pop out enu , regardless e list
	ОК	

$\label{eq:Equation Builder} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	 Note that, Amount, Temperature and Pressure will be evaluated directly; whereas Gas Phase, Solution Phase or Solid Phase will add more options
a Input Stream: I v Var2 Var2 V Metal Var2 V Input Stream: I v Amount (g) Temperature (K) Pressure (atm) Gas Phase Solution Phase Solid Phase	Equation Builder x Sample fuction (Fn) = 3*2 + 5*[var1] - ([var2] + 7*[var3]) Fn = [3*2 + [a] + [var2] + [metal] + VAR - VAR AUTO Help Name Excel Stream
 After selecting the desired stream another of down menu appears Select the field whose value you want to ad the variable 	d to
ок	ок 79

		Equation	n Builder				x
	Sample fuction (Fn) = 3*2 +	- 5*[var1] - ([var2] + 7*[v	ar3])				
Fn = 3	*2 + [a] + [var2] + [metal]			+ VAR	- VAR	AUTO	Help
Name	Excel Stream						
а	Input Stream: (~	Gas Phase 🗸 🗸	v				
var2	· · ·		Amount (g) Phase Component				
metal	· · ·		System Component				
							 If Ga whe the If yo Sys⁻
		O	ж				

Equation Builder x	Equation Builder x
Sample fuction (Fn) = 3*2 + 5*[var1] - ([var2] + 7*[var3])	Sample fuction (Fn) = 3*2 + 5*[var1] - ([var2] + 7*[var3])
Fn = 3*2 + [a] + [var2] + [metal] + VAR - VAR AUTO Help	Fn = 3*2 + [a] + [var2] + [metal] + VAR - VAR AUTO Help
Name Excel Stream a Input Stream: (~ Gas Phase ~ Phase Compon ~ O (g/g) var2 ~ metal ~ a o (g/g) (g/g) (g/g) (g/g)	Name Excel Stream a Input Stream: (、 Gas Phase 、 System Compo 、 、 ~ var2 、 、 Fe (g/g) metal 、 、 (g/g) O (g/g) N (g/g) (g/g) (g/g) (g/g) (Spinel#1) (g/g) (Spinel#2) (g/g) (g/g)
 Phase Component will g End members of the pha database (.cst file) System Component will g select Elements (Chemic the database (.cst) file 	give the option to select give the option to cal Species) defined in

				Faustio	n Builder		v
				Equatio	Dunuer		~ ^
		Samp	ble fuction (Fn) = 3*2	+ 5*[var1] - ([var2] + 7*[v	var3])		
Fn =	3*2 + [a	a] + [v	var2] + [metal]			+ VAR - VAR	AUTO Help
Name	Ex	cel	Stream				
а			Input Stream: (~	Gas Phase 🗸	Phase Compon ~	O2 (mol/mol) ~	
		_			· · · · · ·		
var2			Input Stream: I 💙	Solution Phase V	~		
meta			Stream: Oxidise Y	×	LIQUID#1	4	
					FCC_A1#1		
					FCC_A1#2		opt
					FCC_A1#3		ph
					BCC_A2#1		
					BCC_A2#2		
					HCP_A3#1 HCP_A3#2		
					Me4N#1		
					Me4N#2		
					BCC_B2#1		
					BCC_B2#2		
					Al13Fe4		
					AI8Fe5#1		
					Slag-lig#1		
					Slag-lig#2		

		Equation	n Builder			x
Sample	e fuction (Fn) = 3*2 + 5	*[var1] - ([var2] + 7*[v	var3])			
Fn = 3*2 + [a] + [va	ar2] + [metal]			+ VAR - V/	R AUTO	Help
Name Excel 9	Stream	Gas Phase V	Phase Compon ~	O2 (mol/mol) ~		
metal	Stream: Oxidis Y	Ý		Amount (g) Phase Component System Component		After where the C If you Syste
		C	ж			
	SILLI					

acipiosim

Equation Builder x	Equation Builder x
Sample fuction (Fn) = 3*2 + 5*[var1] - ([var2] + 7*[var3])	Sample fuction (Fn) = 3*2 + 5*[var1] - ([var2] + 7*[var3])
Fn = 3*2 + [a] + [var2] + [metal] + VAR - VAR AUTO Help	Fn = 3*2 + [a] + [var2] + [metal] + VAR - VAR AUTO Help
Name Excel Stream	Name Excel Stream
a Input Stream: (v Gas Phase v Phase Compon v O2 (mol/mol) v	a Input Stream: (Gas Phase Phase Compon O2 (mol/mol)
var2 Input Stream: I Y Solution Phase Y LIQUID#2 Y Phase Compon Y Y	var2 Input Stream: I Y Solution Phase Y LIQUID#2 Y System Compo Y Y
metal Stream: Oxidis; * * Al (g/g) Fe (g/g) Fe (g/g)	metal Stream: Oxidish * * Fe (g/g) Al (g/g)
N (g/g)	O (g/g)
0 (6/6)	e(Spinel#1) (g/g)
	e(Spinel#2) (g/g)
Phase Component will gi	ve the option to select
End members of the pha	se defined in the
database (.cst file)	
System Component will g	give the option to
OK select Elements (Chemic	al Species) defined in OK
the database (cst) file	

				Equatio	n Builder				x
		Samp	le fuction (Fn) = 3*2 +	5*[var1] - ([var2] + 7*[v	var3])				
Fn =	3*2 +	[a] + [v	var2] + [metal]			+ VAF	- VAR	AUTO	Help
Name	e 1	Excel	Stream						
а			Input Stream: (~	Gas Phase 🗸	Phase Compon 🕑	O2 (mol/mol)	~		
var2			Input Stream: 1 Y	Solution Phase V	LIQUID#2 V	System Comp	o Y Al	(g/g)	v
met	91		Stream: Oxidise Y	Solid Phase Y	<pre></pre>	Ê		> If or > TI	Sol otioi here
					Al_cbcc_A12(s4) (g) Al_bcc_A2(s5) (g) Al_cub_A13(s6) (g)				
					Al_bct_A5(s7) (g) Al_diamond_A4(s8)	(g)			
					AI_DHCP(s9) (g)				
					Fe_FCC_A2(s) (g) Fe_FCC_A1(s2) (g)				
					FeAI2_S1(s) (g)				
				c	Al2O3_gamma(s) (g)				
					Al2O3_delta(s2) (g) Al2O3 kappa(s3) (g)				

Using Equation: Variable Unit

Using Equation: IFELSE condition

Using Equation: Supported Functions

- List of function supported:
 - All basic operation (+, -, /, *)
 - abs(number): absolute value of number
 - arccos(number): inverse of cos
 - arccosec(number): inverse of cosec
 - arccotan(number): inverse of cotan
 - arcsec(number): inverse of sec
 - arcsin(number): inverse of sin
 - arctan(number): inverse of tan
 - cbrt(number): cube root of the number
 - sqrt(number): square root of the number
 - ➤ tan(number)
 - > sin(number)
 ractrooim

- ➤ cos(number)
- cosec(number)
- cotan(number)
- > arccosec(number)
- > arccotan(number)
- In(number): natural log of the number
- log(x): base 10 log of x
- log(y, x): log of x with base y
- > x^y : x raised to the power y
- > sec(number)
- > signum(number)
- > sqr(number): square of the number

Using Equation: Reviewing the selection

	Equation Builder
Local Units Description:	Sample function (Fn) = 3*2 + 5*[var1] - ([var2] + 7*[var3]) Fn = IFELSE([G] IF((((0.006*(6.18*([A1] + [A2])*([B]+273)*(In(1 + 700 + var auto Help
Excel Link Equation	
Enthalpy (J) Check Schedu	G Stream: steell v Amount (g) v
Pressure (atm) Check Schedu	A1 •
Process ID 7	
Incoming Streams Outgoing Streams FeTi FeTi comb	C O V
undisolv FeTi	D Stream: Steel ~ Amount (g) ~
Skip if No Reactants	After connecting to Equation, the "/" option will becc > This option will show the selection made during con
	further modification can be made if necessary

- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- > Save and load an existing flowsheet

Transferring material to the next step

Transferring material to the next step

	Input Strea	x		
Local Units Description:	No Description		> When a conn	ection (transfer) is made between
Name Input Temperature (C) 1300 Amount (kg) 0.25 Pressure (atm) 1 Components ADD Mass Percent Species 95 Fe 4 0.5 T, mass, P, composition 0.5 Selection only applies	Gas Phase Species All ✓ Si ✓ Si2 ✓ Si3 □ C □ C □ C2 □ C3 □ C4 □ C5 □ SiC2 □ Si2C □ Si2C	Solution Phases All Pu	 Stream and stream needs (the schedule From the 2nd stream the previous Stream is cop temperature, 	to be defined only for the 1st step becomes unavailable) step, the Input Stream will be ne connected Stream computed s step. All information in the bied to the Input Stream: amount, composition and phase selection
Total%: 100	Total Selection: 3	Total Selection: 0	hedule becomes	unavailable
	ок	Schedule		
FactProSim				92

- > Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- > Save and load an existing flowsheet

Global Units

- The main units for the simulations, the global units, can be changed via the Global Units panel in the main window
- The change of units is applied to all modules and all printed values (except in specific modules where local units are activated)
- Note that, when changing the units, the values already entered in the modules are not converted
- Additional units for temperature, amount, pressure and enthalpy will be available in the next program version

Global and Local Units

- It might be more practical to use other units than the global units in specific modules in the diagram.
 Therefore, Local Units can be defined in each Input Stream and Equilib module
- In the module, click the Local Units button. By default, the Units are set to Global. Use the toggle button to switch the temperature and/or the amount to Local Units. The Units selection becomes editable
- Once Local Units are active, the local unit will remain fixed even though the Global Units are modified
- Switch back the toggle button to return to Global units

- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- > Save and load an existing flowsheet

Splitter and Equilib process IDs

Managing process IDs

Auto arrange process IDs

- The Rearrange Process IDs function in the Local controls panel allows to renumber process IDs to have a continuous numbering in the flowsheet
- When 2 modules have identical process ID, the module that was inserted first in the diagram will keep its process ID while the other module will be assigned the next process ID. The process IDs of all the following modules will be updated

▲ The Rearrange Process IDs does not check if the Process ID order is logical. It is the user's responsibility to check that the order of the operations in the flowsheet is logical

- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- Save and load an existing flowsheet

Align the modules in the diagram

- In the Arrange panel, two buttons allow to align vertically or horizontally two or more selected objects
- Select multiple objects (either click and drag a box around the objects or click one object, press the Ctrl key and select each of the other object you want while holding down the Ctrl key), then press the button align vertical or horizontal 101

- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- Save and load an existing flowsheet

Save the flowsheet

PPS	FactProSim	_ [] X
New Save Land Steps 10	Units	CST Stop About Help
 Modules 	Unsaved*	
Input Stream	+ ← 100 %	×
Equilib Heat Ex	$\leftarrow \rightarrow \checkmark \uparrow$ Simulation Exam > BOF Simulation \checkmark \circlearrowright	Search BOF Simu > Press the button Save in the toolbar to
▲ Arrange		save the current flowsheet. In the
Align Align Vertical Horizontal	3D Objects Name Date n Desktop Documents	 browse window, select the location and enter the name of the flowsheet. The flowsheet information are saved in
Excel Files Initializer R	Downloads Downloads Diverses D	 ppf format (encrypted) Along with all the modules data, the nath to the selected database file
	Local Disk (C:)	(* eat) and Excel Files (if Excel Links
	× <	(".cst) and Excel Flies (If Excel Links
	File name: Flowsheet_BOF_Simulation_new Save as type: PyProSim File (*.ppf)	are used in the modules) are stored in the ppf file
Version: 2.1.8909	∧ Hide Folders	Save Cancel
FactProSi	m	103

Load an existing flowsheet

- Press the button Load in the toolbar to open an existing flowsheet. In the browse window, select the flowsheet to open (in ppf format) A The current flowsheet will be lost if not saved!
- Each flowsheet is connected to a database file (*.cst) and Excel Files (if Excel Links are used in the modules). These files must exist at the specified path for the program to load the data correctly
- If the connected database file is not found, the program will prompt to locate it. Press OK, locate the database file in the browse window and press Open. The path to the new database file is updated

Х

\leftarrow \rightarrow \checkmark \uparrow \blacksquare « Project Plan and Presenta \Rightarrow BOF 20	224 V C Search BOF	2024 👂	organize - New Tolder			?
Organize 🔻 New folder		III 🕶 🔳 🕐	Name	Date modified	Туре	Size
Name Date modifie	d Type	Size	BOF_database.cst	02-09-2021 14:58	CST File	261 KB
BOF Flowsheet.ppf 4/19/2024 3:2	27 PM PPF File	18 KB	FeMn_database.cst	03-09-2023 23:34	CST File	571 KB
FPS example.ppf 4/21/2024 9:3	39 PM PPF File	11 KB			CST File	402 KB
		File Not Fo	ound	× -07-2021 10:20	CST File	151 KB
			The required database file (C:\Projects\PyProSim_383 files\BOF_database_383.cst) not found. Specify the location of the database? Cancel will cancel the locating and the default Datab	3\PyProSim	✓ Database files (*.cst) ~
		t t	be used		Open	Cancel
File name: BOF Flowsheet.ppf	✓ PyProSim F	ile (*.ppf)				
		OK	Caucei			
						104

Load an existing flowsheet (continued)

Similarly, if the connected Excel file(s) is not found, the program will prompt to locate the File(s). After pressing OK, the Excel File tool will open automatically. Press the button Change next to the Excel File path. In the browse window, locate the Excel file and press Open. The path to the new Excel file is now updated. Press OK to close the Excel File tool

×	Change Excel Links		🎫 Open			×
The File CAR at the Rest file 2020 Resting	C:\Projects\PyProSim_383\PyProSim files		\leftarrow \rightarrow \checkmark \uparrow Simula \Rightarrow BOF Simulation \checkmark \circlearrowright \checkmark Search BOF Simulation			
files\Data_BOF_Simulation.xlsx was not found.	\Data_BOF_Simulation.xlsx Change	1	Organize 🔻 New folder			· 🔳 🔞
			Name	Date modified	Туре	Size
OK			Data_BOF_Simulation_2.xlsx	01-08-2023 12:27	Microsoft Excel W	12 KB
			 Qitput_BOF_Simulation.xlsx 	01-08-2023 12:34	Microsoft Excel W	95 KB
			File name: Data_BOF_	Simulation_2.xlsx ~	Excel Files (*.xlsx,*.xl	s) V Cancel
	ОК 🖛 🚽				J	
FactProSim					105	

- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- > Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- Changing global and local units
- Manage Splitter and Equilib Process IDs
- > Align the process modules in the flowsheet
- Save and load an existing flowsheet

Step 3: Check the modules – The Initializer

Initialize

New Save Load Steps 10 Run	Initializer	
Modules	Stream: Products 1	Initialize
	Stream: Products 2	Initializa
Input Stream Stream Splitter	Equilib: 2	Initializa
Equilib Heat Ex	Splitter: 1	Initializ
▲ Arrange	→	
Align Align Vertical Horizontal		
▲ Tools		
Excel Files	ок Іг	iitialize All

Version: 2.1.8909

The initializer is a function in the Local Controls panel that checks in each module if all the necessary information has been entered by the user The modules that are not entirely initialized are listed in the Initializer window. Click on the Initialize button next to each listed module to open it and make changes where needed Rearranging, adding or removing modules and connections in the flowsheet, changing phase selection or adding new elements can cause the connected initialized modules to become uninitialized \bigcirc Sometimes no changes are needed in the uninitialized module. However, the user must still open and check each module listed in the Initializer window. Alternatively user can automate the initialization process by clicking on "Initialize All" button

Press the OK button in the module to reinitialize it

- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- ➢ Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- Changing global and local units
- Manage Splitter and Equilib Process IDs
- Align the process modules in the flowsheet
- Save and load an existing flowsheet
Step 4: Run the process flowsheet

FactProSim

Run the process flowsheet

Select Excel Sheet to Write Output													
Organize 🔻 New fol	der												
👌 Music	^	Name	Date modified	Ту									
Pictures		DeOx data new.xlsx	01-07-2021 16:21	Mi									
🚆 Videos		Output.xlsx	30-09-2022 10:55	Mi									
🏪 Local Disk (C:)													
•	~	<		>									
File name: Out	put.xls	x	~	7									
Save as type: Exce	l Files	(*.xlsx, *.xls)	~	1									
∧ Hide Folders			Save Cancel										

- If no errors are found, the program will prompt for an Excel output file (default Output.xlsx) where the simulation results will be printed
- A new Excel file can be created or an existing Excel file can be selected

▲ When selecting an existing Excel file, previous calculation results will be overwritten in the worksheets matching the names of the streams in the current flowsheet. Other worksheets in the existing Excel file will not be erased or modified

Run the process flowsheet

Error during run

Description of the program

- Overview of the main window and commands in the Toolbar
- Step 1: Create and load a database file
- Step 2: Build the Process Flowsheet
 - Modules Panel
 - Input Stream module
 - Splitter module
 - Equilib module
 - Heat Exchanger module
 - Using Excel Links in the modules
- ➢ Step 3: Check the modules The Initializer
- Step 4: Run the process flowsheet
- > Step 5: View the Results (Output Excel File)

- Using Equations in the modules
- Transferring material to the next step
- Changing global and local units
- Manage Splitter and Equilib Process IDs
- Align the process modules in the flowsheet
- Save and load an existing flowsheet

FactProSim

Step 5: View the results – Excel Output file

		• @ -	.			Output	:2.xlsx - E	xcel	Sign	in 🖻						
F	ile	Home	Insert	Page Layout	Formulas I	Data Re	view	View Help	Q Tell me what y	you want to do	,	$\mathcal{P}_{\!$	e			
Pa	ste	+ Arial	<u>U</u> -	• 10 • A A		eb G □ - G	eneral 7 ▼ %	 Condition Format a Cell Style 	nal Formatting • s Table • s •	∑ - ^A ZT ↓ - <i>P</i> ∢ -						
Clij	oboard	G.		Font	G Alignmer	nt 🖬	Number	5	Styles	Cells	s Editing 🔨					
N																
	•				D		-	F	0							
1	A	Reactiv	n. 2	C	D		E	F	G	H		J				
2	Time	Temperat	ure IC1	DELTA Cp [J.K-1	I DELTA H IJ	DELTA	S [J.K-1]	DELTA G [J]	DELTA V (dm3)							
3	1		1500	-13.539159	4 265499.860)1 85.	72284892	2 120779.0093	104.221686	1						
4	2		1500	3.00021E-0	8 -0.0043319	97 -1.3	9163E-06	-0.0018644	-1.73285E-00	6						
5	3		1500	3.87014E-0	8 3.31013E-1	1.9	7796E-16	6 -1.97086E-14	4.26708E-10	6						
6	4		1500	3.09611E-0	8 2.65079E-1	1.5	8388E-16	6 -1.57673E-14	3.41404E-10	6						
7	5		1500	2.47689E-0	8 2.12066E-1	13 1.2	6712E-16	6 -1.26135E-14	2.73024E-10	6						
8	6		1500	1.98151E-0	8 1.69522E-1	13 1.0	1295E-16	6 -1.0091E-14	2.18475E-10	6			-11			
9	1		1500	1.58521E-0	8 1.35657E-1	13 8.1 12 C.4	0591E-1/	7 -8.07282E-15	1./4/8E-10	5			-11			
10	ŏ		1500	1.2001/E-U		13 6.4 14 E.4	0093E-1/		1.39809E-10	0			-			
12	9 10		1500	8 11626E 0	0 0.07204E-	і4 Э.Т I/I // 1	6/18E-17	7 -5.10030E-15	8 9/661E 1	7			-			
12	10		1500	0.11020E-0	5 0.55207L-	14 4.1	3410E-17	-4.15519E-15	0.54551E-1	/ 			$-\square$			
14							The	rogulto	a tha Eva		ıt filo o		rac			
15							ine	results i		ei ouipi	it me a	are o	rga			
16						ksheets:										
	• •	Re	action	Information 0	utput 1 O	utput 2	1.Th	ne worksl	heet Read	ction Inf	ormat	ion p	oro			
Rea	dy						equilibrium calculation for each Equilib module at each step									

FactProSim

View the results – Excel Output file (continued)

I	. •	o•∂	÷ =	Output2.xlsx - Excel Sign in											T -	- 🗆	>	<						
File Home Insert Page Layout Formulas Data Review View Help 👰 Tell me what you want to do												R	Share											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								란 Wrap ■ 표 Merg gnment	ab Wrap Text General Image: Styles Image: Styles								► Aut	utoSum * Ar P ill * Sort & Find & Clear * Filter * Select * Editing					~	
A1 \bullet : $\times \checkmark f_x$												~												
	ŀ	4	В	С	D	E	F	G	н	1	J	к	L	М	N	0	Р	Q	R	S	Т	U	1	
1	Time	T	emperatu	Fe-liq Amount (c Fe (a/a)	Al (a/a)	C (a/a)	Ca (g/g)	Mn (a/a)	O (a/a)	Si (a/a)	Ma (a/a)	MaO (a/	a) CaO (g/d	ı) AIO (a/a)	SiO (a/a)	MnO (a/a)	Al2O (a/a)	Fe (a/a)	Mn (a/a)	Ca (g/g)	Si (a/a)	AI (
3		1	1600	40	0.99786	3.87E-05	0.0003	0	0.0017	9.14E-06	9E-05	0 (0 0))	0	0 2.11E-06	4.55E-09	2.67E-07	2.7E-08	0.99786	0.0017	0	9E-0	15	
4		2	1500	31.99972	0.997869	3.45E-05	0.0003	0	0.0017	5.34E-06	9E-05	0)	0	0 1.64E-06	2.66E-09	1.68E-07	2.42E-08	0.997869	0.0017	0	9E-0	15 3.5	
5		3	1500	25.59978	0.997869	3.45E-05	0.0003	0	0.0017	5.34E-06	9E-05	()	0	0 1.64E-06	2.66E-09	1.68E-07	2.42E-08	0.997869	0.0017	0	9E-0	15 3.5	
6		4	1500	20.47982	0.997869	3.45E-05	0.0003	0	0.0017	5.34E-06	9E-05	C)	0	0 1.64E-06	2.66E-09	1.68E-07	2.42E-08	0.997869	0.0017	0	9E-0	15 3.5	
7		5	1500	16.38386	0.997869	3.45E-05	0.0003	0	0.0017	5.34E-06	9E-05	0)	0	0 1.64E-06	2.66E-09	1.68E-07	2.42E-08	0.997869	0.0017	0	9E-0	15 3.5	
8		6	1500	13.10709	0.997869	3.45E-05	0.0003	0	0.0017	5.34E-06	9E-05	C)	0	0 1.64E-06	2.66E-09	1.68E-07	2.42E-08	0.997869	0.0017	0	9E-0	15 3.5	
9		7	1500	10.48567	0.997869	3.45E-05	0.0003	0	0.0017	5.34E-06	9E-05	0)	0	0 1.64E-06	2.66E-09	1.68E-07	2.42E-08	0.997869	0.0017	0	9E-0	15 3.5	
10		8	1500	8.388535	0.997869	3.45E-05	0.0003	0	0.0017	5.34E-06	9E-05	C)	0	0 1.64E-06	2.66E-09	1.68E-07	2.42E-08	0.997869	0.0017	0	9E-0	15 3.5	
11		9	1500	6.710828	0.997869	3.45E-05	0.0003	0	0.0017	5.34E-06	9E-05	C)	0	0 1.64E-06	2.66E-09	1.68E-07	2.42E-08	0.997869	0.0017	0	9E-0	15 3.5	
12		10	1500	5.368663	0.997869	3.45E-05	0.0003	0	0.0017	5.34E-06	9E-05	C)	0	0 1.64E-06	2.66E-09	1.68E-07	2.42E-08	0.997869	0.0017	0	9E-0	15 3.5	
13																								
14																								
15																								
16																								1
17									21	The o	ther v	vorks	heet	s corr	esnor	nd to e	ach S	Stream	n mo	dule i	in the			
10			1 222 24	100/25		E Star	100 200		— ••	100			1000		0000									
	3 3		Reactio	on Informa	tion Pro	oducts 1	Products 2	2 Outp	ut 1 flo	wshe	et (th	e wor	'kshe	et be	ing na	med	after	the St	ream	n). Ea	ch wo	orksh	eet	t
Rea	Ready							atain	for		oton	the				rotur					h			

flowsheet (the worksheet being named after the Stream). Each workshe
 contains, for each step, the calculated temperature and amount of each
 phase in the Stream, and composition of gas and solution phases if
 selected (both species and elemental)